代写EMS704: Simulation and Model-Based Systems Engineering调试Python程序

EMS704: Simulation and Model-Based Systems Engineering

Coursework 1: Group Report and Presentation on Simulation Approaches

1    Outline

Coursework 1 weighting:                               30% of total grade

Coursework 1 release date:                           Monday, 27th  January (week 1)

Coursework 1 submission format:                 Group report and presentations (read briefing at QM+)

Coursework 1 report due date:                       Tuesday, 11th  March 23:59 (week 6)

Coursework 1 presentation date:                   Friday, 14th  March (week 8)

Coursework 1 group allocation:                     You  will  be  allocated  a  random  group  with  3  to  5 students on Monday 27th  January

EMS704 Coursework 1 focuses on the application of simulation approaches taught in Weeks 1–6 to design, build, and validate a simulation model of a real-world system. Students will demonstrate their understanding of various simulation paradigms (discrete, continuous, stochastic, agent-based) and apply relevant tools (e.g., Python, MATLAB, Simulink, NetLogo). The objective is to engage in a full simulation modelling process, including:

•    Problem definition and requirements specification

•    Selection and justification of the simulation approach

•    Simulation model building and analysis

•    Presentation of outcomes and critical insights

2    Coursework briefing

The coursework involves creating a simulation model for a system selected (not limited) from a provided list in Section 3. Each group will perform. the following tasks:

Problem Definition and Objectives

Students must clearly define the problem their simulation model will address. This involves:

•    Identifying the system of interest and providing an overview of its context, importance, and purpose;

•    Outlining the key functionalities and challenges associated with the system;

•    Defining specific objectives for the simulation, including the goals the model is expected to achieve (e.g., performance evaluation, optimisation, decision support);

•    Including  a  visual  representation  of  the  system  (e.g.,  diagram,  flowchart)  to  enhance understanding.  This  could  highlight  the  system's  boundaries,  major  components,  or processes;

•    Explicitly stating any assumptions made during problem formulation.

Simulation Approach

Students need to select and justify the simulation approaches(s) used in building their model. This process should demonstrate a clear understanding of how the chosen approaches align with the system’s objectives and characteristics. Mixed approaches could be considred when appropriate, as many real-world systems benefit from a combination of simulation approaches to capture their complexities. Key elements to address include:

•     Choice of Approache(s): Clearly identify the simulation paradigms selected for the model. These  could  include,  but  are   not  limited  to:  discrete-event  simulation,   Monte-Carlo simulation, agent-based modelling, bayesian networks. Consider mixed approaches when necessary.  For example, combining agent-based modelling with  Monte Carlo simulation allows for capturing both individual agent behaviours and system-wide uncertainties.

•    Justification: Justify the selection of paradigm(s) and tools based on system characteristics. Explain how the approach fits the system’s complexity, dynamics, data availability, and modelling objectives.

•    Assumptions and Limitations: Discuss assumptions made during the selection process and potential limitations of the approach. Highlight how these may affect model accuracy or scope.

•    Trade-offs:  Identify trade-offs  between  model fidelity, computational efficiency, scalability, and data requirements. Justify how the chosen approach balances these considerations.

Model Design and Implementation

Students must develop a conceptual model of the system and implement it using simulation tools. This involves:

•     Conceptual Model Development: Create diagrams such as flowcharts, block diagrams, or pseudo-code   representations   to   communicate   the   design   process;   define   the   key components, parameters, and processes in the model; describe the relationships between components and how they interact within the system.

•     Implementation:  Implement the conceptual model using at least one simulation tool (e.g., Python,  Simulink,  NetLogo);  provide  details  on  the  steps  taken  during  implementation, including setting up input parameters, defining outputs, and coding workflows if applicable.

•     Integration:   Highlight   how   various   components   were   integrated   into   the   simulation environment;  if  applicable,  explain  the  handling  of  multi-domain  aspects  or  interfaces between different paradigms in mixed approaches.

Verification, Validation, and Analysis

Students must ensure the accuracy and reliability of their model and derive meaningful insights from simulation results. This involves:

•    Verification:  Demonstrate that the  model functions as intended and adheres to its design specifications;  include  methods such as debugging,  reviewing the  logic of implemented code, and testing individual components.

•    Validation:  Confirm that the  model represents the real-world system accurately; compare simulation results with empirical data, theoretical predictions, or expert knowledge; conduct sensitivity analyses to evaluate the model’s robustness against variations in inputs.

•    Analysis of Results:  Present  results using appropriate visuals, such as graphs, tables, or charts; interpret findings, identify  trends or patterns, and explain their implications for system behaviour or decision-making.

•     Insights and Recommendations: Provide insights drawn from the analysis and suggest possible improvements or optimisations for the system; discuss any limitations  in  the experimental process and how they may affect conclusions.

Report and Presentation

Students must document their work in a professional report and deliver a concise presentation. This includes:

•     Report:  Prepare a detailed report that summarises the entire process, including problem definition,  approach,  design,  results,  and  insights;  ensure  the  report  is  well-structured, clear, and visually appealing, with appropriate use of headings, diagrams, and references;

Submit a compressed document of the simulation and modelling source code via QM+ with the report. The  report should be limited  to a maximum of 20 pages, excluding references and appendices.  It  is  recommended  to  organise  the  report  as follows:

o  Executive Summary: The report starts with an executive summary on the cover

page, which includes the names of group members and provides an overview of the problem, the approaches taken, key findings, and recommendations.

o  Problem Definition and Objectives: This section defines the problem, outlines the system’s purpose, and specifies the simulation objectives with assumptions and  visuals.

o  Simulation Approach: This section describes the chosen simulation approaches, justifies their selection, and discusses assumptions, limitations, and trade-offs.

o  Model Design and Implementation: The model design and implementation section explains the conceptual model, its components, and the simulation tool used.

o  Verification, Validation, and Analysis: This section covers the methods used to verify and validate the model and presents key findings from the analysis.

o  Conclusions and Recommendations: The conclusions and recommendations summarise the findings and suggest improvements for the system.

o  References and Appendix

•     Presentation: In Week 8, each group will deliver a 15-minute presentation highlighting the key aspects of their project, including findings and recommendations, and should be prepared to answer questions from peers and instructors. Additionally, each group will give a 10-minute mock presentation in either Week 5 or Week 6 to outline their progress on the coursework. Note the mock presentations are formative, aimed at providing feedback, and will not be graded.

3    Suggested systems for coursework

•   Infrastructure systems (e.g., Hyperloop system, HS2 project)

•   Automotive systems (e.g., electric cars, Formula 1 cars, hybrid cars)

•   Space systems (Columbia space shuttle, Europa Clipper Mission, James Webb Telescope)

•   Robotic systems (e.g., an articulated robot)

•   Healthcare systems (e.g., medical equipment, pharmaceutical systems)

•   Smart cities (e.g., transportation systems, IoT)

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图