代做Numerical Computing, CSCI-UA 421 Spring 2025代写Matlab语言

Numerical Computing, CSCI-UA 421

Spring 2025

Course Instruction Mode

This course will be taught in person. Lectures will be given using the classroom blackboard and computer demos. Participation in the class is required, and you will be expected to respond to questions via electronic polls. The topic of each class will be posted on this web page, along with references to the relevant parts of the textbooks as well as class notes. Don't hesitate to ask questions during lectures, either by raising your hand or directly speaking out if I don't notice you.

. Small Group Meetings

At the start of the semester I would like to meet all students in small groups in my office. The purpose of these meetings is for me to get to know you and also for you to meet some other students in the class. Please sign up here. If none of the times work for you, send me email.

Office Hours

I will hold regular office hours on Wednesdays at 3-4 p.m. in CIWW 429, starting Jan 29. If this time does not work for you, send me email to set up an appointment, or just try dropping by my office any time.

Tutor

Ellen Persson, a Ph.D. student in mathematics, will be a tutor for this class five hours per week. Starting Jan 27, she will hold office hours on Mondays, Wednesdays at 1-2pm and Tuesdays, Thursdays at 10-11am, all in CIWW 412, and online by appointment if necessary (send email to [email protected]) .

. Course Summary

Introduction to numerical computation: the need for floating-point arithmetic, the IEEE floating-point standard, correctly rounded arithmetic, exceptions. Conditioning and stability. Direct methods for numerical linear algebra (Gauss elimination (LU factorization) and Cholesky factorization for systems of linear equations, normal equations and QR factorization for least squares problems) . Eigenvalues and singular values. Iterative methods (Newton's method for solving a single nonlinear equation or a system of nonlinear equations). Discretization methods (approximating a derivative, solving a differential equation with boundary conditions). Polynomial interpolation and cubic splines. Convex optimization: the gradient method and Newton's method.

Importance of numerical computing in a wide variety of scientific applications. How can you tell how accurate your answers are? We will use the computer a lot in class and you should become quite proficient with MATLAB by the end of the course. If you like math as well as programming, you should enjoy this class!

. Prerequisites

Computer Systems Organization (CSCI-UA 201), either Calculus I (MATH-UA 121) or both of Mathematics for Economics I and II (MATH-UA 211 and 212), and Linear Algebra (MATH-UA 140), or permission of instructor. Knowledge of MATLAB in advance is not expected. The Linear Algebra prerequisite is particularly important; if you are not sure if you have enough background, send me email to discuss this. If you have already taken the math department's Numerical Analysis course, you will find there is a lot of overlap with this course; if you are not sure if you should take the course anyway, please send me email to discuss this.

. Requirements

o   Attend class, responding to polls (10% of the final grade) (if you are unable to attend a class, because of sickness or for another reason, please let me know by email)

o   Read the assigned chapters from the two text books, and other assigned notes

o Do the homework (30% of the final grade)

o Write the midterm exam and final exam (each 30% of the final grade)

. Required Text Books

o Numerical Computing with IEEE Floating Point Arithmetic, by the instructor

The first edition of this book was published by SIAM in 2001, and my web page for the first edition is here . Although the basic principles of IEEE floating point arithmetic have not changed much since 2001, the technology implementing them has. I have just finished writing the second edition of this book, which will be published by SIAM later this year. You can access the final draft of the second edition here but please do not post this anywhere. You will be expected to read Chapters 4, 5, 6, 7, 11, 12 and 13, and I will ask questions about these chapters in the homeworks and midterm exam, but I recommend that you read the whole book (it is only 140 pages, and you may find Chapter 15, which is about the new floating point formats for AI, quite interesting). If you find typos or have other comments please send them to me by email.

o A First Course on Numerical Methods, by Uri Ascher and Chen Greif

This book is currently being revised by the authors. The revised chapters will be posted here as we get to the relevant topics.

Chapter 1 (good to read, but not required as this is mostly covered in my book)

Chapter 2 (not required now, we'll cover this later)

Chapter 3 (linear algebra background, read except as noted)

Chapter 4 (direct methods for linear systems, important to read this)

Chapter 5 (please read Section 5.1 only)

Chapter 6 (please read, except as noted in pdf )

o Required Software

MATLAB: available for free to NYU students

There are many books on MATLAB; I recommend MATLAB Guide, by D.J. Higham and N.J. Higham, SIAM, 2000. Chapters can be freely downloaded via the NYU library subscription using this link.

o Class Forum

The class forum will use the Ed Discussion tool in Brightspace. Feel free to ask questions about the class and homework here, either to everyone, or just to me and the graders, and feel free to answer questions posed by other students. However, don't post solutions to the homework! Helpful hints  are ok. Please participate!

o Lecture Schedule and Notes (future dates are tentative)

1. Tue Jan 21: Introduction and overview, IEEE floating point representation (my book, Ch 1-4), notes

2. Thu Jan 23: Rounding, absolute and relative rounding errors (my book, Ch 5), notes

3. Tue Jan 28: Two loop programs (see Ch 10),correctly rounded floating point operations, exceptions (my book, Ch 6-7), notes , mfiles firstLoopProgram.m , secondLoopProgram.m , parRes.m , roundModes.m

4. Thu Jan 30: Floating point microprocessor and programming language support for the standard, cancellation, approximating a derivative by a difference quotient (my book, Ch 8,9,11), notes , mfile differenceQuotientErrors.m

5. Tue Feb 4: Conditioning of problems, intro to stability of algorithms (my book, Ch 12-13), notes , mfiles condNumExpt.m , compoundInterest.m

6. Thu Feb 6: More on stability of algorithms (my book, Ch 13), notes , mfile approxExp.m

7. Tue Feb 11: Linear algebra review: linear independence of vectors, conditions for square matrix to be nonsingular, matrix rank. Vector and matrix norms, computing the matrix ∞ norm (AG, Ch 3). Skip sections on positive definite matrices, orthogonal matrices, eigenvalues, singular values, SVD and differential equations for now (we will return to these later), notes

8. Thu Feb 13: Polynomial interpolation via Vandermonde matrices (AG, sec 3.5). Matlab's \ (backslash). Solving linear systems of equations (AG, sec 4.1-4.2): back substitution, Gaussian elimination without pivoting, equivalence to LU factorization (decomposition), notes , mfiles plotInterpPoly.m , gauss_el.m , backsolve.m

NO CLASS on Tue Feb 18

9. Thu Feb 20: more details on the LU factorization (AG, sec 4.2), Gauss elimination with partial pivoting (GEPP) and the PA=LU factorization (AG, sec 4.3), notes

10. Tue Feb 25: Continuation of GEPP and its equivalence to PA=LU, demo that on random matrices, GEPP is stable, rare worst case instability of GEPP (AG, sec 4.3), banded matrices (AG, sec 5.1), Matlab's sparse matrices, notes , mfiles geppUnstableExample.m , geppUnstableExampleDemo.m

11. Thu Feb 27: Cholesky factorization of positive definite matrices. Use my Cholesky notes instead of AG sec 4.4. notes , mfile chol3.m

12. Tue Mar 4: Least squares: the normal equations and solution by Cholesky factorization (AG, sec 6.1, p.173-183), orthogonal vectors and matrices (AG, p. 87-88), notes ,

13. Thu Mar 6: Least squares: solution via QR factorization using Householder reflections (AG, sec 6.2 and 6.3, but skip the subsection on the

Gram-Schmidt process which is classical but not used much, and skip the part on the SVD and the pseudo-inverse for now), my notes on QR , notes

14. Tue Mar 11: Errors, residuals, condition numbers and stability for solving Ax=b (AG, sec 4.5, p.132--134), notes , mfiles errorResidualConditioningStabilityDemo.m , getIllCondRandomSymPosDefMtx.m

15. Thu Mar 13: TBA, release practice midterm

16. Tue Mar 18: Review of practice midterm

17. Thu Mar 20: Midterm Exam. No notes, laptops, phones or other devices permitted.

o Exams

The midterm will cover all lecture topics before spring break. The focus will be on: my book chapters 4-7 and 11-13,AG chapters 4-6

(skipping sections as noted in the PDF notes), with emphasis on the topics covered in the homeworks, but also other topics covered in class. You will be asked to write MATLAB code in some questions. The midterm will be in class on Thu Mar 20, 11-12:15, CIWW 101. No notes, laptops, phones or other devices permitted.

The final exam will focus mostly on the topics discussed after spring break, with an emphasis on the topics covered in the homeworks. You

will be asked to write MATLAB code in some questions. The final exam will be Wed May 7 ("reading day"), 12:00--1:50 pm, CIWW 101. No notes, laptops, phones or other devices permitted.

o Homework

There will be 8 homework assignments, 5 before spring break and 3 after. If you have questions about the homework, please post them on Ed Discussion, where the tutor or I, or maybe other students if they wish, can answer them. It is important that you do the homework mostly by yourself (not jointly with another student), but when you get stuck, I encourage you to consult with other students, the class tutor or me, or the web, or even AI tools, to get help when necessary. However, when you get help from ANY of these sources, or any other source, or give help to other students, it's important to acknowledge that in writing in your homework submission, explicitly explaining how much help you got and how much of the work you did yourself. Submitting work not done by you as if it were your own is called plagiarism and is not acceptable. For more information, see the CS department's policy on integrity. Penalty for not acknowledging your sources: zero for the homework. Finally, remember that if you don't mostly do the homework yourself, you will not learn the skills you need to be able to pass the midterm and final exams .

Homework assignments will be posted here but you should submit your homework on Gradescope. Homework is due at 11:59 pm on the given date. Late homework will be penalized 10% if just one day late, and 20% if between two and seven days late. Homework will not be accepted more than one week late, except in special circumstances. If you have questions about the grading of the homework, post a private question to me and the grader on Ed Discussion.

Homework 1, posted Jan 23, due Jan 30

Homework 2, posted Jan 30, due Feb 11

Homework 3, posted Feb 11, due Feb 20

Homework 4, posted Feb 20, due Mar 4

Homework 5, posted Mar 4, due Mar 13

o Don't Hesitate to Ask for Help

If you have questions, ask them in class or on the class forum, come to my office hour or send me email to set up an appointment. Don't wait until it's too late!



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图