代写COMP3425 Data Mining S1 2025 Undergraduate Assignment 1帮做R编程

COMP3425 Data Mining S1 2025

Undergraduate Assignment 1

Maximum marks

100

Weight

20% of the total marks for the course

Minto pass hurdle

30%

Length

Maximum of 8 pages excluding cover page, bibliography and appendices.

Layout

A4. At least 11 point type size. Use of typeface, margins and headings consistent with a professional style.

Submission deadline

9am, Tuesday 11th March

Submission mode

Electronic, PDF via Wattle, file-name includes u-number

Estimated time

15 hours

Penalty for lateness

100% after the deadline has passed

First posted:

17 February, 8am

Last modified:

17 February, 8am

Questions to:

Wattle Discussion Forum

This assignment specification may be updated to reflect clarifications and modifications after it is first issued.

You are required to submit a single report in the form. of a single PDF file with a file-name that includes your University u-number ID.  The first page must have a clearly identified title and author, with both name and university u-number, which may form. a separate cover page. You may also attach supporting information as appendices in the same PDF file. Appendices will not be marked.

This is a single-person assignment and must be completed on your own. You must use quality reference material and carefully reference via in-text citations, including material provided to you in the course. Any material that you quote must have the source clearly referenced. It is unacceptable to present any portion of another author's work as your own. Anyone found doing so will be penalised in marks. In addition, ANU plagiarism procedures apply. This course introduces fundamental concepts that could potentially be addressed by certain Generative AI tools (e.g., ChatGPT). Hence, the use of any Generative AI tools is not permitted in graded assessments within this course.

You are strongly encouraged to start working on the assignment right away. You can submit as many times as you wish. Only the last submission at the due date will be assessed.

Task

The Australian Computer Society Code of Professional Conduct 2014 is expected to be applied by all Computing Professionals in Australia.  It sets out six values but stresses the primacy of the public interest as the overriding value. In 2018, the Australian Government Office of the Australian Information Commissioner released the Guide to Data Analytics and the Australian Privacy Principles (APP). In 2022 UNESCO published the Recommendation on the Ethics of Artificial Intelligence (SHS/BIO/PI/2021/1) for voluntary application by Member States. The recommendation is broad in scope and far-reaching in implementation responsibilities over the whole AI system lifecycle. It includes a statement of values and 10 principles that should be respected by all actors in the AI lifecycle, including “ data scientists, end-users, business enterprises, universities and public and private entities” (p10). These three documents must be read and are provided with this assignment specification

You must also read the paper, Clarke R. (2018),  “Guidelines for the Responsible Application of Data Analytics” Computer Law & Security Review 34, 3 (Jul-Aug 2018), that is provided with this assignment specification and hereafter referred to as the Guidelines. You must also read the paper, Du, Liu and Hu, (2020) “ Techniques for Interpretable Machine Learning”,

Communications of the ACM 63(1) that is also provided with the assignment specification.

You are to consider the application of the ACS code of conduct, the 10 UNESCO Principles, Clarke’s Guidelines and Duetal’s Techniques to the following fictitious ad targeting scenario. You may also use the APP guide, where it is helpful.

Ad Targeting Scenario (from Clarke R. (2016) “Big Data, Big Risks”, Information Systems Journal 26, 1 (January 2016) 77-90, PrePrint athttp://www.rogerclarke.com/EC/BDBR.html

A social media service-provider accumulates avast amount of social transaction data, and some economic transaction data, through activity on its own sites and those of strategic partners. It applies complex data analytics techniques to this data to infer attributes of individual digital personae. It projects third-party ads and its own promotional materials based on the inferred attributes of online identities and the characteristics of the material being projected.

The 'brute force' nature of the data consolidation and analysis means that no account is taken of the incidence of partial identities, conflatedidentities, obfuscated identities, and imaginary,fanciful, falsified and fraudulent profiles. This results in mis-placement of a significant proportion of ads, to the detriment mostly of advertisers, but to some extent also of individual consumers. It is challenging to conduct audits of ad-targeting effectiveness, and hence advertisers remain unaware of the low quality of the data and of the inferences. This approach to business is undermined by inappropriate content appearing on childrens' screens, and gambling and alcohol ads seen by partners in the browser-windows of nominally reformed gamblers and drinkers.

You must answer the following questions, clearly indicating which question you are answering within your submission. The page lengths suggested for each question here are for guidance only; the given page length limit for the overall assignment is mandatory.

Question 1.  (1 page) Consider the ACS code of conduct. For each of the six values, taking account of any relevant sub-parts, discuss whether the value was demonstrated in the scenario and to what extent. If you assess any value as largely irrelevant to the scenario, then a very brief reason for this assessment is sufficient.

Question 2. (1/2 page) Consider the 10 UNESCO Principles [S III.2]. Looking closely at Principle Proportionality and Do No Harm [p20], discuss how this principle is applied (or not) in the scenario and identify any potential harm that might have ensued.

Question 3.  (2 pages) Consider the numbered guidelines in Table 2 of Clarke’s Guidelines for the responsible application of data analytics. From every segment (1 General, 2 Data Acquisition, 3 Data analysis, and 4 Use of the Inferences) choose one guideline that you consider would have been applied in the scenario. Its application may not be explicit in the scenario description, but it should be relevant and important to the scenario and you can argue that it was applied properly and therefore did not contribute to the negative consequences of the scenario. Explain its role in the scenario including how it would have contributed to positive outcomes. Justify why it is more relevant than everyone of the other guidelines that you consider would have been applied in the same segment. Argue how it is more or less relevant than any guidelines in the same segment that you consider may have been disregarded in the scenario.  Be careful to consider the intention of the guidelines rather than an overly literal interpretation; you may rephrase the chosen guideline for the scenario context where beneficial. For further explanation of this point, see Section 3 in Clarke’s Guidelines.

Question 4. (1 page) (a) Choose one, numbered guideline (e.g. guideline 3.3) in Table 2 of the Guidelines that you consider to have been disregarded in the scenario. You may choose any guideline that you did not choose for Question 3.  Discuss how the failure to consider the guideline could have contributed to the negative outcome of the scenario. (b) In addition, identify any other potential consequences that could have occurred due to the failure to consider that same guideline. For this purpose, the consequences you identify are not necessarily explicit within the scenario description.  You might find it helpful to think of this activity as contributing to a risk assessment process prior to your hypothetical involvement in the analysis work of the scenario.

Question 5. (1 page) Consider the paper by Duetal, Techniques for Interpretable Machine Learning. Discuss whether and how intrinsic and post-hoc interpretability techniques could be applied to the scenario and what benefits could ensue.

General Comments

An abstract or executive summary is not required.  A cover sheet is optional and does not contribute to the page count. No particular layout is specified, but you should follow a professional style. and use no smaller than 11 point typeface and stay within the maximum  specified page count.  Page margins, heading sizes, paragraph breaks and so forth are not  specified but a professional style must be maintained. Text beyond the page limit or word   count limit will be treated as non-existent. Appendices maybe used and do not contribute  to the page count, but appendices might be only quickly scanned or used for reference and will not be specifically marked.

You must properly attribute the source documents provided for your assignment (but not this assignment specification itself) and any other reference materials you choose to use.

You are not required to use additional materials. No particular referencing style is required. However, you are expected to reference conventionally, conveniently, and consistently. Your references should be sufficient to unambiguously identify the source, to  describe the nature of the source, and also to retrieve the source in online and (if possible) traditional publisher formats.

An assessment rubric is provided. The rubric will be used to mark your assignment. You are advised to use it to supplement your understanding of what is expected for the assignment and to direct your effort towards the most rewarding parts of the work.

Your assignment submission will be treated confidentially, but it will be available to ANU staff involved in the course for the purposes of marking.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图