代写Project 1: Properties of an Elemental Transition Metal代写C/C++编程

Project 1: Properties of an Elemental Transition Metal

Transition metals are of great technological relevance for the chemical industry due to their unique properties and versatility in a wide range of applications, including catalysts, magnetic materials, and electronics. In this project, you will explore the properties of an elemental transition metal, for now, in the absence of temperature or pressure.

A technical objective of this project is to become familiar with the LAMMPS software and its  input/output file formats. Scientific objectives are to find the ground-state energy, lattice parameter, vacancy formation energy, and one surface energy of face-centered cubic (FCC) gold. As you work through the project, you will also learn about the importance of convergence parameters and the limitations of interatomic potentials used in atomic-scale simulations.

Geometry optimizations (relaxations)

In nature, a crystal in equilibrium is automatically in the lowest energy (ground-state) configuration. The ground-state lattice parameters and atomic positions define the ground-state lattice geometry that minimizes the lattice energy. The ground-state lattice parameters are generally not known a priori. Given a reasonable guess, we can perform. a geometry optimization or relaxation that finds  the lowest energy configuration by adjusting the atomic positions and lattice parameter(s) until an  energy minimum is found.

Vacancy formation energy

The vacancy formation energy Ev is defined as the energetic cost to remove an atom from a lattice site and reinsert it into the bulk of the material:

where Ebulk  and EN-1  are the energies of the perfect bulk supercell with N atoms and of the defect cell with one atom less, respectively. Ebulk   is proportional to the number of atoms in the supercell, so we can scale it with factor (n - 1)/n in order to compare the energy of a defective cell with n  -  1 atoms to that of a perfect cell with n -  1 atoms.

Surface energy

The surface energy is the energy that is required to truncate an infinitely extended crystal along a  specific  lattice  plane.  Calculating  surface  energies  follows  a  similar  overall  approach  to calculating  vacancy  formation  energies,  but  different  convergence  parameters  must  be considered.

Surface relaxations and pair potentials

The Lennard-Jones potential is given by the following equation

Pair potentials, such as the Lennard-Jones potential, show outward surface relaxations, which is in disagreement with experimental observation.

1.   Lattice constant of Au

a.   Calculate the lattice constant (in Å) and total energy (in eV) for FCC Au using the supplied LJ potential. First, use LAMMPS’ built-in minimizer (input file lmp-in.1a-relax), then find the lattice constant by manually adjusting the lattice parameter (input file lmp-in.1a-single). Start with a lattice parameter close to the relaxed lattice parameter. Plot the energy as a function of the lattice parameter from above to below the optimized value (Figure 1), and identify the equilibrium lattice constant.

Hint: See the project guide for an explanation of the LAMMPS input format.

b.   Repeat the calculations, both automated and manual (Figure 2), for the supplied embedded-

atom model (EAM) potential (input file: lmp-in.1b-single). Hint: Don’t forget to upload the EAM potential file to nanoHUB.

c.   Discuss your findings. The experimental lattice constant of Au is 4.08 Å . How do the calculated lattice constants compare to the experimental value? Is this expected? Is it significant that the absolute values of the lattice energies for the LJ and EAM potential are different? Hint: Consider how the different potentials were constructed (see table below).

2. Vacancy formation energy of Au

a.   Compute the vacancy formation energy (in eV) with the provided LJ potential as a function of the supercell size. Do not relax the atomic positions after taking out an atom. Perform a convergence test and plot the energy against the convergence parameter (Figure 3). What is the ratio of the vacancy formation energy to the cohesive energy? Explain your result. Explain how you calculated the cohesive energy. Hints: The (conventional) FCC unit cell contains 4 atoms. Use the optimized LJ lattice parameter from problem 1.

b.   Repeat your calculation, but this time relax the atomic positions after creating the vacancy. Perform another convergence test and add  results to Figure 3.  How  does the vacancy formation energy change compared to the unrelaxed calculations? What is the reason for this behavior? Hint: Adjust your LAMMPS input file for relaxations (see problem 1).

c.   Now  compute  the vacancy formation energy  using the provided  EAM potential.  Do it as accurately as you can. Report your convergence test (Figure 4). Use what you learned in parts a. and b. Hint: Use the optimized EAM lattice parameter from problem 1 as initial value.

d.   The experimental vacancy formation energy is ~0.9 eV. How do your final results compare?

Discuss your result in light of your findings from problem 1.

3.   Surface energy of the Au(100) facet

a.   Compute  the  surface  energy  of  the  Au(100)  surface  using  the  LJ  potential.  Report  all equations. What are the two convergence parameters? Perform and plot your convergence tests (Figure 5). Report your result in meV/Ǻ2 . Be computationally efficient.

b.   Repeat with the EAM potential, including convergence tests (Figure 6). Please skip relaxations for problem 3.

4.   Short answers

a.   For what class of compounds are Lennard-Jones potentials most suitable (name 1 example)? b.   For what class of compounds/materials are EAM potentials most suitable (name 1 example)? c.   Name 2 examples of materials/interactions for which neither LJ nor EAM are appropriate.

5.   Conceptual understanding

a.   Calculate the distance r+  where the LJ potential reaches its minimum. Express r+   in terms of ε and σ , and evaluate using the values from your calculations (e.g., lmp-in.1a-single).

b.   Determine the nearest-neighbor distance dNN   in the optimized structure of problem 1. Why is dNN  different from r+ ?

c.   Based on your results, explain why computer simulations are required even for simple energy models such as the LJ potential.

Assignment

1.  Address the above questions in a two-page report.

a.   Introduce subsections to distinguish between the different problems.

2.   Include Figures 1–6 in the appendix. Make sure to refer to the figures from your report.

3.   Include all derivations (problem 5) in the appendix. Pictures of hand-written notes are fine.

4.   Include examples of input files for problems 1–3 in the appendix.

Provided Files

File

Description

Comment

lmp-in.1a-single

LAMMPS input file for a single point calculation of FCC Au using a Lennard-Jones potential

lmp-in.1a-relax

LAMMPS input file for geometry optimizations (relaxations) using a Lennard-Jones potential

lmp-in.1b-single

LAMMPS input file for a single point calculation of FCC Au using an EAM potential

EAM potential file required

lmp-in.1b-relax

LAMMPS input file for geometry optimizations (relaxations) using an EAM potential

EAM potential file required

Au-Grochola-

JCP05.eam.alloy

EAM potential for Au. This potential was

published in J. Chem. Phys. 123, 204719 (2005) and can be obtained from

http://www.ctcms.nist.gov/potentials

The Lennard-Jones potential was constructed as a loose fit to the lattice constant and the vacancy formation energy. Parameters: ε = 0.114 eV; σ = 2.645 Å

The EAM potential was fitted to high-temperature lattice constants of several crystal structures and to liquid densities.

Problems 2 and 3:

We do not provide separate files for problem 2 and 3. Use the files provided for problem 1 and start from there. See the project guide for hints regarding the creation of vacancies and surface slab models.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图