代写EN203 Problem Set #3代写Web开发

Problem Set #3 (Chapter 4)


27) Students at Mideastern University. According to the National Center for Education Statistics (NCES), nearly 20% of the bachelor’s degrees awarded in 2019 were business degrees (NCES website). Suppose that 24% of students at Mideastern University study business. Students at Mideastern University either live on campus or commute to campus. It is known that 38% of students commute to campus at Mideastern University and 59.5% of students are either business students or live on campus.

a) What is the probability that a randomly selected student at Mideastern University lives on campus?

b) What is the probability that a randomly selected student at Mideastern University studies business and lives on campus?

c) Is it true that a student studying business and a student commuting to campus at Mideastern University are mutually exclusive events? Explain.

29) Ivy League Admissions. Highschool seniors with strong academic records apply to the nation’s most selective colleges in greater numbers each year. Because the number of slots remains relatively stable, some colleges reject more early applicants. Suppose that for a recent admissions class, an Ivy League college received 2851 applications for early admission. Of this group, it admitted 1033 students early, rejected 854 outright, and deferred 964 to the regular admission pool for further consideration. In the past, this school has admitted 18% of the deferred early admission applicants during the regular admission process. Counting the students admitted early and the students admitted during the regular admission process, the total class size was 2375. Let E, R, and D represent the events that a student who applies for early admission is admitted early, rejected outright, or deferred to the regular admissions pool.

a) Use the data to estimate P(E), P(R), and P(D).

b) Are events E and D mutually exclusive? Find P(E ∩ D).

c) For the 2375 students who were admitted, what is the probability that a randomly selected student was accepted during early admission?

d) Suppose a student applies for early admission. What is the probability that the student will be admitted for early admission or be deferred and later admitted during the regular admission process?



33) Intent to Pursue MBA. Students taking the Graduate Management Admissions Test (GMAT) were asked about their undergraduate major and intent to pursue their MBA as a full-time or part-time student. A summary of their responses follows.

a) Develop a joint probability table for these data.

b) Use the marginal probabilities of undergraduate major (business, engineering, or other) to comment on which undergraduate major produces the most potential MBA students.

c) If a student intends to attend classes full-time in pursuit of an MBA degree, what is the probability that the student was an undergraduate engineering major?

d) If a student was an undergraduate business major, what is the probability that the student intends to attend classes full-time in pursuit of an MBA degree?

e) Let A denote the event that the student intends to attend classes full-time in pursuit of an MBA degree, and let B denote the event that the student was an undergraduate business major. Are events A and B independent? Justify your answer.

34) On-Time Performance of Airlines. The Bureau of Transportation Statistics reports on-time performance for airlines at major U.S. airports. JetBlue, United, and US Airways share terminal C at Boston’s Logan Airport. Suppose that the percentage of on-time flights reported was 76.8% for JetBlue, 71.5% for United, and 82.2% for US Airways. Assume that 30% of the flights arriving at terminal C are JetBlue flights, 32% are United flights, and 38% are US Airways flights.

a) Develop a joint probability table with three rows (the airlines) and two columns (on-time and late).

b) An announcement is made that Flight 1382 will be arriving at gate 20 of terminal C. What is the probability that Flight 1382 will arrive on time?


c) What is the most likely airline for Flight 1382? What is the probability that Flight 1382 is by this airline?

d) Suppose that an announcement is made saying that Flight 1382 will now be arriving late. What is the most likely airline for this flight? What is the probability that Flight 1382 is by this airline?

42) Credit Card Defaults. A local bank reviewed its credit card policy with the intention of recalling some of its credit cards. In the past approximately 5% of cardholders defaulted, leaving the bank unable to collect the outstanding balance. Hence, management established a prior probability of 0.05 that any particular cardholder will default. The bank also found that the probability of missing a monthly payment is 0.20 for customers who do not default. Of course, the probability of missing a monthly payment for those who default is 1.

a) Given that a customer missed one or more monthly payments, compute the posterior probability that the customer will default.

b) The bank would like to recall its card if the probability that a customer will default is greater than 0.20. Should the bank recall its card if the customer misses a monthly payment? Why or why not?

43) Prostate Cancer Screening. According to a 2018 article in Esquire magazine, approximately 70% of males overage 70 will develop cancerous cells in their prostate. Prostate cancer is second only to skin cancer as the most common form. of cancer for males in the United States. One of the most common tests for the detection of prostate cancer is the prostate-specific antigen (PSA) test. However, this testis known to have a high false-positive rate (tests that come back positive for cancer when no cancer is present). Suppose there is a 0.02 probability that a male patient has prostate cancer before testing. The probability of a false-positive testis 0.75, and the probability of a false-negative (no indication of cancer when cancer is actually present) is 0.20.

a) What is the probability that the male patient has prostate cancer if the PSA test comes back positive?

b) What is the probability that the male patient has prostate cancer if the PSA test comes back negative?

c) For older males, the prior probability of having cancer increases. Suppose that the prior probability of the male patient is 0.30 rather than 0.02. What is the probability that the male patient has prostate cancer if the PSA test comes back positive? What is the probability that the male patient has prostate cancer if the PSA test comes back negative?

d) What can you infer about the PSA test from the results of parts (a), (b), and (c)?




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图