代做AFIN2070 Assignment帮做R编程

AFIN2070 Assignment

INSTRUCTIONS FOR ASSIGNMENT

The assignment is an individual task. You are not to discuss or share your work with any other student.

The release date for the assignment is Wednesday 2nd  October 6PM, the due date is Sunday 13th October 11:59PM.

Answer the questions below to the best of your ability. There are two types of questions, CALCULATION (C) and WRITTEN RESPONSE (W). Where applicable, responses that do not show sufficient working steps will not receive full marks. Unless otherwise specified, give your answers to 4 decimal places.

You are required to submit your assignment to Turnitin. For Turnitinto scan your answers properly, your WRITTEN RESPONSE  (W)  answers  must  be  typed  and  then  converted  into  PDF  format.  Any  other  format will  not  be accepted. For CALCULATION (C) questions, you may insert pictures of graphs or handwritten equations in your document to show working, but handwritten or otherwise scanned/photographed submissions will not be graded if Turnitin cannot scan your WRITTEN RESPONSE (W) answers.

Submit your PDF under the section “Assignment Submission Link” on iLearn.

This assignment is worth 30 marks in total. The marks for each question and sub-component have been clearly indicated.

A penalty of 5% of the total possible marks (of the task) will be applied each day (24-hour period) the written assessment is not submitted, until the 7th day. The 7 days includes weekends. After the 7th day, a grade of ‘0’ (zero) will be awarded even if the student submits the assessment (for example, an assignment that is 25 hours late will incur a 3-mark penalty -  10% of the total 30 marks). This penalty will not apply to cases in which an application for special consideration is made and approved.

Question 1 (4 marks)

COPYCON wants to see if their weekly sales values have any impact on their weekly share returns (with a one-week delay). The relevant values over a two-month period are shown below (data are also available in the Assignment Data spreadsheet under “Q1” .

Week

Sales revenue in week ($millions)

Share return for (week + 1)

1

18.8

5.4%

2

41.4

31.7%

3

40.5

40.3%

4

19.7

5.9%

5

49.2

17.6%

6

15.4

11.7%

7

45.2

24.6%

8

31.7

24.9%

9

43.4

34.7%

10

42.7

14.4%

a)    (C) Calculate Spearman’s rho for this data. Show full working.        [2 marks]

b)   (C) Calculate Kendall’s tau for this data. Show full working.          [2 marks]

(HINT: The use of Excel may help you here. If you do choose to use Excel, include any relevant explanation of the calculation used as part of your submission)

Question 2 (6 marks)

The daily returns over a selected period for share A and B have been recorded and provided to you in the Assignment Data spreadsheet under “Q2” . Use this data to answer the following questions.

a)    (C) Make an appropriate graph of the pairs of daily returns to depict the relationship. Include all relevant labels to make your graph clear.          [2 marks]

b)   (C) State the Pearson’s correlation coefficient for these daily returns. You do not need to show any working for this part.     [2 marks]

c)    (W) Explain what your result in part b) means with reference to your graph in part a).          [2 marks]

Question 3 (8 marks)

Jimmy has collected annual advertising spending and sales data from 100 different businesses in Metropolis. This data has been recorded and provided to you in the Assignment Data spreadsheet under “Q3” . All amounts are measured in thousands of dollars. Use this data to answer the following questions.

a)    (C) Jimmy would  like to use this data to build a model to estimate the annual sales based on advertising spending. Plot an appropriate graph based on the data provided.           [2 marks]

b)   (C) Jimmy now has to fit the models i  = α + βA i  + εi; where si   is the annual sales for business i, Ai   is the annual advertising spending for business i, and εi~N(0, σε(2)) is the i.i.d. error term for business i. State the values of α and β from this fitted model. You do not need to show any working for this part.       [2 marks]

c)    (W) Explain what α and β in part b) represent.          [2 marks]

d)   (W) Under Jimmy’s model, state explicitly the assumptions for the error term εi. From the graph in part a), does the data seem to match the assumptions required? Explain your answer.          [2 marks]

Question 4 (4 marks)

Roy is modelling the maximum daily loss in any month for shares in Emblem Industries. He believes this maximum loss L follows a GEV(0.03,0.02,0.01) distribution.

a)    (C) Write down the CDF for this distribution and clearly state what this function represents. Also, calculate the mean and variance of L under Roy’s model. Clearly state any values of the Gamma function that are used in your model.     [2 marks]

b)   (C) Using part a) or otherwise, find the value x in the distribution so that P(L  > x) = 1%. Show all relevant calculation steps.   [2 marks]

Question 5 (4 marks)

Michael works for an insurance company that currently has a portfolio of 200 home insurance contracts in the region of Lloyd. Michael has been asked to undertake a risk analysis of the home insurance portfolio. By looking at home insurance portfolios from other regions, he assumes that the number of claims follows a Poisson process with an average of 8 claims per year.

a)    (C) What is the probability that the first claim from this portfolio does not happen within three months? Clearly state what distribution(s) you are using and show all relevant calculation steps.          [2 marks]

b)   (C) Michael’s boss is worried about the company going bankrupt. He says that if the company receives 30 or more claims from this portfolio within the next 4 years they won’t be able to afford it. Under Michael’smodel, what is the probability that this occurs? Clearly state what distribution(s) you are using and show all relevant calculation steps.

(Hint: the use of Excel may help you. If you do choose to use Excel, include any relevant explanation of the calculation used as part of your submission.)         [2 marks]

Question 6 (4 marks)

The monthly return of a portfolio of shares is distributed as in the table below:

Outcome

Probability

-40%

0.001

-35%

0.004

-20%

0.005

-15%

0.04

-10%

0.05

-5%

0.1

0%

0.3

2%

0.22

5%

0.15

10%

0.1

15%

0.03

a)    (C) Calculate the expected return on the portfolio in the worst 1% of all cases         [2 marks]

b)   (C) Calculate the expected return on the portfolio in the worst 10% of all cases          [2 marks]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图