代写EMATM0066 Visual Analytics Exercises: Week 1代写Processing

EMATM0066

Visual Analytics Exercises: Week 1

In this first tutorial, we will do two exercises in groups.

Exercise 1

Warm-up for whole class. For each of the following variables, define its type and identify any unusual features that might make its visualisation or analysis challenging:

1.   Email address

2.   Date of birth

3.   Cruising speed of an airplane

4.   Hurricane force scale (Saffir-Simpson

https://www.nhc.noaa.gov/aboutsshws.php#:~:text=The%20Saffir%2DSimpson%20H urricane%20Wind,scale%20estimates%20potential%20property%20damage.&text=I n%20the%20western%20North%20Pacific,sustained%20winds%20exceeding%2015 0%20mph. )

5.   Bank balance

6.   Country

7.   MSc grades (Pass, Merit, Distinction)

Exercise 2

In your groups consider one of the following scenarios for time series data:

•     Scenario 1: sample every 1/100th  of a second (100Hz), duration 1 day, 1 thing.

o  Example: ECG recording

•     Scenario 2: sample every 5 minutes, duration 1 year, 2 things.

o  Example: Currency exchange rates: British pound against US dollar; British pound against euro.

•     Scenario 3: sample every 5 minutes, duration 1 year, 10 things.

o  Example: Many currency exchange rates

•     Scenario 4: sample every 5 minutes, duration 1 year, 1000 things.

o  Example: CPU load across 1000 machines

•     Scenario 5: sampling frequency varying from 100Hz to every minute, duration 1 day,

5 things.

o  Example: Health monitoring in hospital ward.

Your group has ~20 minutes to brainstorm possible strategies for visualization that you think  would be appropriate for your assigned scenario. Both static charts and interactive strategies are worth thinking about. You’ll be reporting back to the large group afterwards, so decide in  advance which person will speak for the group.

Document your discussion in your group’s shared document, as you go. Words are quick to type. You should also make sketches to communicate your ideas, whenever words alone aren’t enough. You can sketch on paper and take a picture with your phone camera, or use a drawing program on a tablet or laptop – whatever is quick and easy – and upload those images into your shared document.

Exercise 3

In this exercise you will identify the types of datasets and attributes. These datasets are taken from the Office of National Statistics website but are more immediately accessible from the Blackboard page as attachments.

•    Estimates of completed international visits to and from the UK for on month

https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/datasets/ monthlyoverseastravelandtourismreferencetables

•    Travelpac Quarterly data on travel to and from the UK, taken from the International Passenger Survey (IPS). Includes detail on age and sex of travellers, purpose and length of trip, and spending.

https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/datasets/t ravelpac

NSA = ‘non-seasonally adjusted’: why do you think that seasonal adjustment is important for travel statistics?

For each field

•     Analyze the attribute abstractions:

•     write down a concise description in domain-dependent language of field’s meaning

•     decide the attribute type and write that down

•     Determine its cardinality/range

•     For categorical attributes, write down the number of unique levels

•     For quantitative attributes, specify the range from min to max and note any  other characterization that seems potentially useful (cyclic? Anything else?)

•     For ordered attributes, consider whether it would be more useful to treat them categorical or quantitative, or to preserve them as ordered.

Write down your discussions in the shared document.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图