Final Exam
	Part A. Multiple Choice Questions (5 points each, total 25 points) 
	1.In three-dimensional space, the dot product of the vectors a=(2,−3,5) and b=(1,4,−2) is: 
	●     A) 0
	●     B) 10
	●     C) -1
	●     D) 1
	2.If r(t)=(t,t2 ,t3), then drdt is: 
	●     A) (1,2t,3t2)
	●      B) (0,0,0)
	●     C) (t,2t,3t)
	●     D) (1, 1, 1)
	3.If the function f(x,y)=x2+y2, then the gradient ▽fat the point (1, 1) is: 
	●     A) (2,2)
	●     B) (1, 1)
	●     C) (2, 1)
	●     D) (1,2)
	4. For the double integral over the region D defined by 0≤x≤1 and 0≤y≤1−x, the value of  is: 
	● A) 6/1 
	● B) 4/1 
	● C) 3/1 
	●    D) 2/1 
	5.According to Stokes' Theorem,  where C is: 
	●     A) An open curve
	●      B) A closed curve
	●     C) A plane
	●      D) A solid
	Part A. Fill-in-the-Blank Questions (5 points each, total 25 points) 
	6.In three-dimensional space, the  cross product 
	a=(2,2, 1) and b=(1,0,3) is a×b=   . 
	7.Let f(x,y)=x3y+2xy2, then the partial derivative ∂f∂x at the point (1,2) is   . 
	8.The double integral  over the region D represents   . 
	9.The line integral  represents   . 
	10.If the divergence of a vector field is zero, then the field is   . 
	Part C. Short Answer Questions (10 points each, total 50 points) 
	11.Please explain the geometric meaning of the partial derivative of a multivariable function, and provide an example. 
	12.Use double integrals to compute the integral  over the region D defined by 0≤x≤1 and 0≤y≤1−x. 
	13.Briefly describe Green's Theorem and its applications in physics. 
	14.State and prove the Divergence Theorem. 
	15.Calculate the line integral F(x,y)=(y,x) along the straight line segment from (0,0) to (1, 1).