代写Math 54 Online – Project Information Handout代做Prolog

Math 54 Online - Project Information Handout

This small project will give you a chance to apply what you have learned about simple linear regression and study a problem that you find interesting. In this project, you will perform a statistical analysis to investigate how two quantitative variables (not qualitative variables) are associated and how one influences the other. You can choose what two variables you are interested in studying and will use your own data in order to perform an analysis. I will provide you with a few good sources from which you might be interested in obtaining your data. The requirements for this project are discussed in detail below.

You may work individually or with up to three other classmates maximum (so for a group of up to 4 people, including you). Use of Excel or other computer statistical software will be required to carryout various calculations, produce tables and graphs, and to perform a statistical analysis. You will be required to write a 2 or more page report (double-spaced) briefly discussing the problem being studied, your analysis and findings, as well as additional or concluding remarks. Note that the 2 or more page minimum length does not include any tables or graphs (which will be included separately after the paper). You will include the Excel graphs or charts produced after the report, as well as the raw data collected.

This project will be worth 70 points in total, and the project will count for 6% of your course grade.  However, a project survey in the form of a Canvas quiz, in which you can give your preferences for the project, will be worth an additional 5 points (so for 75 points including the survey).  Your report should be well-written with proper grammar.  Below I have a suggested   framework of how to structure your short project report (for after you have completed your summary output using technology).  Following this will make writing your report much easier.  You must include these key points, but you can alter the ordering slightly, if you wish.

A. Suggested Paragraph Structure for the Written Report (Minimum 2 pages, double-spaced)

Paragraph 1:  First, give an introduction discussing the problem being studied, some background on the topic, and why it is of interest to you.  Second, mention how your data was obtained, citing your data source.  Lastly, describe which variable would be the explanatory variable and which one is the response variable, and why so.

Paragraph 2:  First, interpret the meaning of the correlation coefficient from your summary output in in a sentence for your project example (follow the structure that I taught in my notes and videos).  Second, include the linear regression equation in the report with the determined   intercept and slope values.  Third, interpret the slope and intercept values from the regression  equation in sentences (follow the structure that I taught in my notes and videos).

Paragraph 3:  First, state what the coefficient of determination value is, and interpret its meaning in a sentence for your project (follow the structure that I taught in my notes and videos).  Second, perform. diagnostics on the regression model using the residual plots from your summary, based on material taught in section 4.3 (chapter 4); here comment on (1) whether or   not a linear model should be appropriate, (2) whether or not the residual error term appears to have constant variance, and (3) whether or not there are any outliers.

Paragraph 4:  Briefly describe, in conclusion, if this regression model does a good job in explaining the dataset, based on your Excel findings. Here you can make additional comments about the regression model that you think are worth mentioning.  This is your chance to be creative and provide additional insight, but there is not really a right or wrong way to do this.

B. Requirements for the Appendix After the Written Report:

a) A scatter diagram showing the relationship between the 2 variables being analyzed.

Include a graph of the linear regression equation in this plot as well. Be sure to label the axes and the plot.

b) Show the tables, determined using Excel toolbars and functions, which display coefficient values, t values for the regression coefficients, and the p-values.

c) The residual plot, as shown in class. Be sure to label the axes and the plot.

d) The raw data collected.

e)  Describe how you and your group member each contributed to the project (if you worked in a group).  [If you worked alone then you will not need to do anything for this parte)].

Note:  Full credit (100%) will be given on the project if you:  (1) follow correctly all of the guidelines from the suggested framework (from this document) for the report section with proper sentence interpretations for your project variables, and if your report is well-written , (2) if you follow the requirements for the appendix graphs and charts shown right above on this page.  Thus, if you allow enough time for this project and follow my suggestions it should not be hard to get an ‘A’ grade on it.

Each group only has to turn in 1 paper (including Excel graphs or calculations.  This will be submitted on Canvas.  I will check the report for plagiarism.  This project must be submitted no later than Saturday, February 15 by 11:59pm.  Note that Iam giving a few extra days to complete the project than the due date on the syllabus.  This means that you must submit your report (or your group’s report) by that time.  No late reports will be accepted.

 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图