代写CSEN 338 Image and Video Compression调试C/C++语言

CSEN 338 (4 Units)

Image and Video Compression

PROJECT INFORMATION AND LIST OF SUGGESTED PROJECTS

Phases:

•    Group or individual project

•    Literature survey, study

•    Design or Discussion or Comparison

•    Implementation if any

•    Presentation & Report

Suggested Topics:

1.   Entropy Coding or Decoding

•    Conduct  a literature survey on a fast entropy coding or decoding techniques (e.g. fast or parallel CABAC decoding or Golomb decoding).

•    Conduct a simple implementation (e.g. software in Python/C/Matlab or hardware design) of a simple entropy coder; test it out with images and evaluate your results (e.g. memory, complexity).

•    Do a presentation and write a report.

2.   Predictor or Quantizer Design

•    Conduct   literature  survey  on  good  predictor/interpolator/filter  techniques  (e.g.  AIF,  Wiener, directional) or good quantization techniques (e.g. Lloyd-Max or others, cascaded, adaptive, AQMS, RDOQ, subjective). It would be better (but not critical) if you take into account perceptual visual distortion, especially for quantization.

•    Produce  an  implementation  (e.g.  software  in  Python/C/Matlab  or  hardware  design)  of a  simple predictor or quantizer; test out your work with images.

•    Evaluate your results (e.g. bit-rate vs. visual quality vs. computational complexity).

•    Do a presentation and write a report.

3.   2-D Transform

•    Conduct literature survey on new 2-D or directional transform for image/video coding.

•    Produce an implementation & its inverse (e.g. Python/C/Matlab) for the transform; you can use Matlab Image Processing Tool Box; test your transform. with several images with quantization.

•    Evaluate your results (e.g. bit-rate vs. visual quality vs. computational/memory complexity).

•    Do a presentation and write a report.

4.   Design of a Motion Estimator / Compensator

•    Conduct literature survey and study on recent motion estimation techniques.

•    Investigate one issue for motion estimation (e.g. sub-pel, AIF filter, motion model, coding methods for MV or residue, reference picture selection/generation, search range, partial distortion search, MV competition,flexible search patterns, merge mode, affine methods, motion fields) or advanced motion methods in HEVC or VVC.

•    Design and produce a simple implementation to demonstrate motion estimation (e.g. in JM or HM or Matlab/C/Python); test out your design with two or more frames.

•    Evaluate your results (e.g. bit-rate vs. visual quality vs. computational/memory complexity).

•    Do a presentation and write a report.

5.   Performance Analysis for Image Codec

•     Study an image codec structure of the BPG standard.

•    You can also find out new techniques adopted in BPG that were not in JPEG.

•    Suggest a list of performance issues to evaluate (e.g. coding efficiency, computational complexity).

•    Do a presentation and write a report.

6.   Performance Analysis for Video Codec

•    Study  a  video  codec  or just  decoding. JVET VTM (VVC/H.266) is preferred, but JCT-VC HM (HEVC/H.265) or H.264 JM arefine. For some cases you need to know C++. Alternatively, you could explore 3D or scalable extensions of the codec (e.g. JCT-3V HTM (3D-HEVC) software).

•    You can also find out new techniques adopted in VTM that were not in HM, or in HM that are not in JM; or comparing two different codecs.

•    Suggest a list of performance issues to evaluate (e.g. coding efficiency and computational complexity). Alternatively, you could explore multicore processor or GPUs for speeding up codecs.

•    Do a presentation and write a report.

7.   Machine Learning Methods in Video Coding

•    Study a video coding technique and see which part(s) (e.g. mode decision, partitioning/coding unit depth decision, transform, intra prediction, motion estimation) can machine learning methods (e.g. SVM,  classification,  decision  trees,  PCA,  sparse  dictionary  learning,  K-SVD)  or  deep  learning methods (e.g. CNN, GAN, RNN, transformer) be applied to achieve better performance.

•    Suggest a list of performance issues to evaluate (e.g. coding efficiency, computational complexity).

•    Do a presentation and write a report.

8.   Deep Learning Methods in Video Coding

•    I am particularly interested in the study of one of these methods for end-to-end image/video coding:

•    (a) Use of convolutional neural network (CNN) in video coding.

•    (b) Use of generative adversarial network (GAN) in image/video coding.

•    (c) Use of autoencoder (AE), variational autoencoder (VAE), recurrent neural network (RNN),LSTM, and especially transformers, in image/video coding.

•    (d) Use of deep learning approaches in motion estimation.

•    (e) Use of reinforcement learning in video rate control.

•    (f) Visual quality metric for learned image/video coding.

•    (g) Complexity reduction methods.

•    Suggest a list of performance issues to evaluate (e.g. coding efficiency, computational complexity).

•    Do a presentation and write a report.

9.   A Current Hot Topic (typically 1 person but can be more) - Survey / Study / Comparison

Select a recently hot topic of interest from:

•    Latest and future JPEG image coding standards - JPEG-AI, JPEG-DNA, JPEG-NFT, JPEG-XE.

•    Latest and future video coding standards - VVC/H.266,NNVC, etc.

•    Video coding for HDR, WCG, 360 video, screen content, 3-D, point cloud, etc.

•    Visual volumetric video coding (V3C) standards - VPCC, MIV, V-DMC.

•    Video coding for surveillance video.

•    Video for visually impaired.

•    Image coding for plenoptic images - light field, point cloud, or holograph.

•    Visual quality metric for plenoptic images, 360 video, 3-D video, and point cloud.

•    Deep learning assisted tools for image/video coding (e.g. post-processing, optimization, rate control, reference frame. generation, intra prediction).

•    End-to-end deep learning-based image/video coding (e.g. autoencoder, transformer).

•    Generative AI approaches - GAN, diffusion probabilistic models, etc.

•    Advanced AI approaches like codebook-based methods, tokenization, etc.

•    Deep learning in visual quality assessment.

•    Image or video coding for machines (VCM) (e.g. semantic coding, feature coding).

•    Green video coding.

•    Advanced  approaches  in  HVS  (e.g.  psycho-visual  studies,  DMOS,  JND,  SSIM,  saliency  map, reference-free method) and its effect on RDO and quantization.

•    Visual attention and saliency.

•    Methods in 3D video coding (e.g. depth coding, view synthesis, and 3D-HEVC).

•    Graphics compression (especially 3D graphics) or haptic compression or AR video.

•    Coding for immersive multimedia, VR/AR in metaverse.

•   Visual communication (e.g. transcoding, rate control or shaping, congestion control) over networks.

•    Advanced intra-prediction methods or inter-prediction methods for VVC or beyond.

•    RDO plus complexity, Lagrange multiplier, or advanced quantization methods.

•    Pre- or post-processing (e.g. artifact removal, denoising, or error concealment).

•    Computer vision approaches (e.g. face detection) in coding.

•    Parallel methods and/or use of GPUs or TPUs (systolic arrays) in video coding.

•    Other advanced topics (e.g. super-resolution).

•    Your suggestion (need approval, and must be related to compression).

   Conduct a literature survey on the topic.

   Study and compare different approaches, if needed.

   Do a presentation and write a report.

10. Your Suggestion

•    Needs approval.

•    Should  involve  study  or  design,  simple  implementation  or  comparison/evaluation,  report,  and presentation.

Note: Above are just suggestions, feel free to modify them or suggest your own topic to suit your projects.

Note: The use of AI tools such as ChatGPT is not allowed. Copying materials from websites is not allowed , but references are encouraged.

References

1.   The Internet and Web Sites.

2.   Books recommended on the syllabus and other related books.

3.   Industrial Magazines (for more industrial oriented projects).

4.   Journals  (IEEE  Transactions  on  Circuits  &  Systems  for  Video  Technology,  IEEE  Transactions  on Consumer Electronics, IEEE Transactions on Multimedia, IEEE Transactions on Image Processing, IEEE Communications, IEEE Multimedia, IEEE Signal Processing, IEEE Networks, etc.) (For more research oriented projects).

5.   Conference proceedings.

Report

Suggestion (but not limited to):

•    Abstract of about 50 words

•    Literature survey

•    Design or Analysis or Study

•    Implementation or Comparison (if any)

•    Results or Presentation (if any)

•    Evaluation or Comparison

•    Conclusion (about 20 words)

•    List of References (must)

•    Appendices (if any)

It must be a technical report, not sale’stalk, user’s manual, or layman’stalk.

Your report must not exceed 4 pages (for 1 person), 6 pages (group of 2), 8 pages (group of 3), or 10 pages (group of 4). For each group project, please indicate the individual responsible for each portion of the work. Note that students in the same group may or may not receive the same grade.

Note also that project result is not the most important thing. I grade you based on your effort and work, how challenging the project is, and what you have learned. Please do not “copy and paste” materials from web or other literatures.  Please do not use AI tools such as ChatGPT to generate materials for the report.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图