代写CIS 5530: Project 1 Link State and Distance Vector Routing Spring 2025代做R编程

CIS 5530: Project 1

Link State and Distance Vector Routing

Spring 2025

Overview

In this assignment, you will implement two routing protocols:  link state and distance vector routing. Your ns-3 implementation should be able to read network topology files and calculate the routing table based on the LS and the DV algorithms.  There will be commands to bring up/down a node or a link, your code should handle the update and reflect on the output in a timely manner.  We also provide an auto-grader and test files to validate your implementation.

1 Specification

We will be using the ns-3 discrete network simulator to teach core principles of network routing protocol design and implementation.  Your assignment is to extend ns-3 to support efficient routing using link- state and distance-vector protocols.  For more information on the existing code base and some tips on how to get started, please read the separate CIS 5530: Project 1 Code Documentation.

2 Project Specifications

2.1 Milestone 1 (12%)

In this milestone 1, you will work in teams to develop basic neighbor discovery capabilities to each node. The goals of this first milestone are to become familiar with the ns-3 development environment and understand the TA’s skeleton code. Before you write any code, make sure you read in detail the code documentation, understand the API and structure of the relevant parts of the ns-3 code.

All your code should go inside the upenn_cis553 directory and you should not modify other files in the ns-3 directory. You are free to add new packet types to ls-message.cc and dv-message.cc. Feel free to structure your own code, for instance, introduce your own helper files, or have one neighbor discovery module shared by both LS and DV.

You will finish the following tasks:

1. Neighbor Discovery.

2. Output neighbor table.

Expected Output. Once you finished the above tasks, you should be able to generate the Neighbor List by calling the ‘DUMP  NEIGHBORS ’ command.  The first row of Neighbor List is the total number of the neighbors for that node. Then followed by a series of neighbor entries. Each neighbor entry should include 〈neighbor node number, neighbor IP address, interface IP address〉 . This needs to work for both LS and DV. For example, the output of command ‘1  LS  DUMP  NEIGHBORS’ for 10-ls .sce and 10 .topo should be

**************** Neighbor List ********************

NeighborNumber    NeighborAddr    InterfaceAddr

2

0                              10.0.0.1           10.0.0.2

8                              10.0.6.2           10.0.6.1

Submission for Milestone 1. In Gradescope, select the relevant GitHub repository and branch, and Gradescope will automatically pull/test the most recent version.  Only one person in the team needs to submit.  Be sure to include all other team members in the Gradescope submission (look for the add teammates feature in the top right corner).

2.2 Milestone 2 (88%)

Your assignment is to extend your node to support efficient routing by implementing two protocols: link-state and distance-vector routing. If your implementation works, you will be able to route packets hop-by-hop through the network, having packets propagate through a path, only involving nodes on the route to the destination.

2.2.1 Link-state routing

Your node must implement link-state routing to construct a routing table, and use this routing table to forward packets towards their destination.  You should read about link-state routing in the Peterson textbook and in our lecture slides. The link-state protocol generally involves four steps (See more details in the code guidelines):

1. Neighbor discovery. (Built in MS1)

2. Link-state flooding.

3. Shortest-path calculation.

4. Forwarding.

2.2.2 Distance-vector routing

The second routing protocol you have to implement is the distance-vector routing protocol, described in our lecture notes and in the Peterson’s textbook.  Your solution should address the count-to-infinity problem by bounding the distance to a maximum of 16 hops.  Note that we are not implementing the entire RIP protocol, but a simple distance vector routing protocol that consists of the following four steps (more details in the code guidelines):

1. Neighbor discovery. (Built in MS1)

2. Distance-vector exchange.

3. Route calculation.

4. Forwarding.

Expected Output: Your output should be able to pass the auto-grader test. For example, when you run the protocol over the 10 nodes topology with the command:

$ ./build/scratch/simulator-main --routing=LS \

--scenario=scratch/scenarios/10-ls.sce \

--inet-topo=scratch/topologies/10.topo \

--result-check=scratch/results/10-ls .output

If you passed, you will get this message for each of the tests.

XXX is correct

Submission for Milestone 2: As with Milestone 1, select the relevant GitHub repository and branch, and Gradescope will automatically pull/test the most recent version. You will need to submit separately for LS and DV for small and large topologies. We strongly recommend you ensure that your implementation passes the local autograder first before submitting to Gradescope. As before, make sure you include all your teammates.

3 Extra Credit (submit together with Milestone 2)

Doing extra credit is entirely optional. We offer extra-credit problems as a way of providing challenges for those students with both the time and interest to pursue certain issues in more depth.  You should only attempt the extra credits after you have completed the regular portions of the project. Do note that if your regular credit LS and DV do not work correctly, we reserve the right not to award extra credit points. Hence, we recommend that you only start working on extra credits after you have finished the original assignment.

Submit your extra credit together with Milestone 2 (same deadline).  We will provide a separate submission folder on Gradescope for this submission.  You can add your own custom command line arguments to showcase a given extra credit feature. You are free to make any changes to any part of the ns-3 code base for extra credit, but make sure to not break your original submission in case you need to go back and change anything (e.g., keep things in a separate branch of the repo).

There is no autograder for extra credit. You will need to schedule a meeting with a TA to demonstrate your extra credit. After the deadline, TAs will reach out to schedule a meeting with your group.  Here are some examples of extra credits that you can implement.  For extra credit, you are responsible for providing your own test cases:

Delay tolerant networking (10%) Implement summary-based epidemic routing protocol. Demon- strate actual implementation in a highly disconnected wireless network where nodes are connected   to each other infrequently. You will need to read up outside of course material on this protocol.

Incremental Dijkstra computation (5%) Given a route update, instead of recomputing Dijkstra from scratch for all entries, perform. incremental recomputation that only updates routes relevant to the shortest path. To demonstrate working implementation, you need to demonstrate that your simulation can run significantly faster for the same network size (while computing the correct routes, of course!).

Your proposal (X%) If you have a cool extension in mind, feel free to contact the teaching staff to discuss feasibility and points awarded.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图