代做ES4E8 Advanced Power Electronic Converters and Devices代写Matlab语言

Design of Power Semiconductor Devices, ES4E8 assignment, 2023/24

Module Code

ES4E8

Module Title

Advanced Power Electronic Converters and Devices

Assignment Title

Design of Power Semiconductor Devices

Assignment

Weighting / Credits

30% coursework / 4.5 CATS

Submission Deadline

Noon Thursday Week 21 (22nd February 2024)

Intended Learning Outcomes (ILOs) Assessed

Intended Learning Outcome(s) (ILOs)

Task / Criterion / Section

LO1: Apply advanced concepts through the use of device physics in the context of device design. [M1, M2, M3, M4, M6]

In this assignment, there are three questions. Please answer all questions.

Question A [M1, M2, M3, M4, M6]

Question B [M1, M3, M4]

Question C [M1, M2, M4, M6]

Notes:

•   A total mark below 40% indicates that the ILOs have not all been met at threshold level;

•   A total mark in the range 40 - 48% indicates that the ILOs have all been partially met to at least threshold level;

A total mark of at least 50% indicates that the ILOs have all been met.

Submission Details

The submission details for this assignment are:

Deadline: 12 noon Thu 13 th February 2025.

Method: Online submission via Tabula.

Format of submission: A single .pdf file with a meaningful filename that would contain the student number, the module code, and assignment name, for example:

“1234567_ES4E8_Lab Report.pdf

Submission length: Maximum 2000 words. You will lose 5 marks per extra page over the limit.

Formatting instructions: Use a minimum 11-point Arial (or equivalent) font for the text, with 1.5 line spacing and 25 mm margins all round.

Note: Submissions should  be  of an  appropriate file size  and  students are  responsible for ensuring that work is uploaded successfully before the deadline. If there are technical issues when      submitting      online,       please      contact      the       Engineering      Student      Office (eng.eso@warwick.ac.uk).

Guidance and Referencing Style

It is serious Academic Misconduct to pass off the work of others (including peersor AI-based chatbots such as ChatGPT) as your own and you should not permit colleagues to copy from you. Sources must be appropriately and properly acknowledged everytime reference is made to  another’s  work,  using  the  Harvard  Referencing  system.  Failure  to  do  so  amounts  to plagiarism which  breaches  university  regulations and falls short of the Academic  Integrity expected in the department and university.

Find out more about the School of Engineering Referencing System here:

https://warwick.ac.uk/fac/sci/eng/eso/undergraduate_students/guidance/handbook/skills/s hb-2-04

There are also other types of academic offences including duplication or ‘self-plagiarism’ . Refer  to https://warwick.ac.uk/fac/arts/history/students/undergraduate/assess-plagiarism/ for further details.

Style. and Formatting Guide

Submissions are expected to conform. to professional standards on style and formatting, and guidance can be found here:

https://warwick.ac.uk/fac/sci/eng/eso/undergraduate_students/guidance/handbook/skills/s h-1-06/

Assignment Feedback

•   Your submitted report will be marked electronically. The marks of the various

sections will be provided as well as an outline of the answers of the various sections in order to identify where/how to improve.

Question A

A= (last two digits of your university ID number+450)

B= (last two digits of your university ID number×7+1000)

1.    Figure 1.1 shows the basic cell structure of a power MOSFET.

Describe the internal resistance components in the power MOSFET on-state operation as shown in

figure 1.2(a) and (b) and comment on their effect as the device voltage rating increases. [5%]

Figure 1.1. Lateral channel power MOSFET - device parameters.

Figure 1.2 (a) Planar power MOSFET and (b) Trench power MOSFET.

Table 1: Device parameters

2.    Calculate the on-state resistance % contribution at room temperature of each internal resistance component over the total on-state resistance for a “A”V breakdown rated MOSFET @ Vgate=15V,  Vthreshold= 6.4V and Vdrain=0.6V (where the value of “A” is defined above). Identify the most important resistance contributions.

Use the device parameters as given in table 1 (you may find reference [1], section 6.4 & 6.5 useful for this analysis).   [10%]

3.    Calculate the on-state resistance % contribution at room temperature of each internal resistance component over the total on-state resistance for a “B”V breakdown rated MOSFET @ Vgate=15V,   Vthreshold= 6.4V and Vdrain=0.6V (where the value of “B” is defined above). Identify the most important resistance contributions and discuss how these compare to your finding in part (3).

Use the device parameters as given in table 1 (you may find reference [1], section 6.4 & 6.5 useful for this analysis).    [5%]

4.    Using  MATLAB  (or  analogous  software)  discuss  how  the  variation  of  JFET  region  LJFET    (i.e  the distance between the two p-base regions LJFET= 2*LA) affects the performance of the device in part

(2) with specific reference to internal resistance components. Keep the cell width and channel length constant. Illustrate your answers by means of corresponding plots. [5%]

5.    Discuss how a 1.2kV breakdown-rated Silicon MOSFET device would alter the on-state resistance contributions as the temperature increases from room temperature to 125C° .  [5%]

6.    Discuss how the on-state and off-state performance differs between the Trench MOSFET and the

Planar MOSFET. Refer to Figures 1.2 (a) and (b) for comparison. [5%]

References

[1] Book “Fundamental of Power semiconductor Devices” B.J. Baliga, Springer International Publishing 2008.

Question B

The unipolar limit is the theoretical maximum current-carrying capability of a unipolar semiconductor device, such as a MOSFET, where only one type of charge carrier (either electrons or holes) contributes to conduction. This is usually represented as the relationship between the breakdown voltage vs the specific on-state resistance. The unipolar limit for Silicon is plotted in Fig.2.

An  abrupt  one-dimensional  P+N  diode  is  described  by  the  following  equations  for  the  maximum electric field (EM ) V/cm at the junction and the thickness of the depletion region (WD ) cm, as functions of the doping concentration (N) cm-3  and the applied reverse bias voltage (VR ):

Critical electric field (Ec) for Si, SiC and GaN materials is shown below:

Electron (μe) and hole (μ) mobility models for Si, SiC and GaN are shown below:


References

[1] Book “Fundamental of Power semiconductor Devices” B.J. Baliga, Springer International Publishing 2008.

[2] T. Hatakeyama, K. Fukuda and H. Okumura, "Physical Models for SiC and Their Application to Device Simulations of SiC Insulated-Gate Bipolar Transistors," in IEEE Transactions on Electron Devices, vol. 60, no. 2, pp. 613-621, Feb. 2013, doi: 10.1109/TED.2012.2226590.

[3] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, "Carrier  mobility  model  for  GaN," Solid-State  Electronics,  vol.  47,  no.  1,  pp.  111–115,  2003,  doi: 10.1016/S0038-1101(02)00256-3.

[4] J. A. Cooper and D. T. Morisette, "Performance Limits of Vertical Unipolar Power Devices in GaN and   4H-SiC,"   in IEEE   Electron   Device Letters,   vol.   41,   no.   6,   pp.   892-895,   June   2020,   doi: 10.1109/LED.2020.2987282.

Given the theory above:

1.    Derive and  plot the unipolar limit (breakdown voltage vs specific on-state resistance) for all three materials: Si, SiC and GaN, where the majority carrier is electrons. Clearly state equations used  to  plot  the  unipolar  limit  and  discuss  the  fundamental  differences  between  those materials. Note, that the breakdown voltage range should be within 100-10 000 V range. [10%]

2.    Using the mobility equations  provided above, plot the mobility vs doping for   p-type and n- type Si, SiC and GaN materials and discuss the differences between p-type and n-type Si, SiC and GaN materials in the context of their impact on power device performance [10%].

3.   Three semiconductor manufacturers, A,  B, and C, fabricate 650 V Si  MOSFET devices. The performance  of  these  devices  is  reported  in  Fig.  2.   Explain  the  difference  between  the performance of the device C compared to A and B. [10%]

Figure 2 Performance comparison of MOSFET devices from manufacturers A, B, and C.

Question C

Figure 3.1 shows the on-state characteristics of a 3.3kV Si and SiC PIN diodes at 25°C. Parameters of which are summarized in Table 2.

Table 2. Parameters for 3.3 kV Si and SiC PiN Diodes.

The 3.3 kV SiC Schottky diode has the following I-V equation:

Where Ais the Richardson’s constant equal to 146 A.cm-2K-2  and ΦBN  (eV) is the barrier height.

1.    Discuss which type of diode you would use for applications of 100 A/mm2.  (10%)

2.   Justify the  differences  of the  two  curves  given the  material  properties  (i.e.  Vo   value  and differential resistance (line curvature))? (15%)

3.    Identify  the  SiC  Schottky   diode  forward  voltage  drop  at  100  A/cm2    and   plot  the   I-V characteristics for the Schottky contact metals with ΦBN  equal to 0.6 eV, 1.0 eV and 1.5 eV. Discuss  how  the  selection  of  the   contact  metal  will   affect  the   on-state  and  off-state performance. (15%)

Figure 3.1: The on-state characteristics of a 3.3kV Silicon and Silicon Carbide PIN diodes at 25°C



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图