代做FN3142 Quantitative Finance代写Java编程

FN3142 ZA

BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences, the Diplomas in Economics and Social Sciences

Quantitative Finance

Monday, 22 May 2017 : 10:00 to 13:00

Question 1

The probability density function of the normal distribution is given by

where µ is the mean and σ 2  is the variance of the distribution.

a [7  marks] Assuming µ  = 0 derive the maximum likelihood estimate of σ 2  given the sample of i.i.d data (x1 , x2, . . . , xT ).

b [8 marks] Now assume that xt  is conditionally normally distributed as N(0, σt(2)) where

σt(2) = ω + βσt(2)-1 + αxt(2)-1

Write down the likelihood function for this model given a sample of data (x1 , x2, . . . , xT ).

c [10  marks] Describe how we can obtain estimates for {ω, α, β} for the GARCH(1,1) model and discuss estimation di伍culties.

Question 2

Consider the time series process xt  that follows

xt  = φxt-1 + σct

where ct  ~ N (0, 1) and φ < 1.

a [5 marks] What is the unconditional mean of xt?

b [5 marks] What is the unconditional variance of xt?

c [5 marks] What is the first-order autocorrelation of xt?

d [5 marks] What is the second-order autocorrelation of xt?

e [5 marks] Given a sample of data (x1 , x2, . . . , xT ) you estimate the parameters of this process via OLS. Compute an analytical expression for the R2  in this regression and give an interpretation.

Question 3

a [5  marks] Given a loss function L, an optimal forecast is obtained by minimising the conditional expectation of the future loss:

Given the quadratic loss function

L(y, ˆ(y)) = (y -ˆ(y))2                                                                             (2)

show that the optimal forecast is the conditional mean.

b [5  marks] Describe how one can test forecast optimality with Mincer-Zarnowitz re- gression.

c [5  marks] Consider a forecast Y(ˆ)τ*   of a variable Yτ .  You have 100 observations of Y(ˆ)τ* and Yτ  and run the following regression

Yτ = Q + βY(ˆ)τ* + ετ

and obtain the following results:

            Estimate       Std Error

α         -0.10           0.02

β          1.51           0.30

what null hypothesis should you set up in order to test for forecast optimality?  Can this test be conducted with the information given?

d [10  marks] What can be inferred from the results table in part (c)?

Question 4

a [5 marks] What is meant by serial correlation?  Give an example of a process with zero serial correlation and an example of a process with positive serial correlation.

b [10  marks] Malkiel (1992) stated that a capital market is e伍cient if it fully and correctly re丑ects all relevant information in determining securities prices. Thus, mar- ket e伍ciency is defined with respect to some information set Ωt. Describe the three commonly employed definitions of market e伍ciency that depend on the size of Ωt.

c [10 marks] Which of the following observations could provide evidence against semi- strong form. market e伍ciency? In the case of observations that could go against market e伍ciency, explain what additional information would be needed to conduct a rigorous test.

–  Mutual fund managers do not on average make superior returns than the market.

In a particular year hedge fund managers make superior returns than the market.

Mutual fund managers do not on average make superior returns than the market.

On average hedge fund managers make superior returns than the market.

Low book-to-market stocks tend to have higher returns than high book-to-market stocks.

forming a portfolio that goes long stocks that have had large positive returns over the previous year and goes short stocks that have had large negative returns over the previous year generates superior returns than the market.

FN3142 ZB

BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences, the Diplomas in Economics and Social Sciences

Quantitative Finance

Monday, 22 May 2017 : 10:00 to 13:00

Question 1

Imagine the following gamble.  First, flip a fair coin to determine the amount of your bet: if heads, you bet $1, if tails you bet $2.  Second, flip again:  if heads, you win the amount of your bet, if tails, you lose it.  For example, if you flip heads and then tails, you lose  $1; if you flip tails and then heads you win $2.) Let X be the amount you bet, and let Y be your net winnings (negative if you lost).

a [10  Marks] Show that the covariance between X and Y is zero. b [15 Marks] Show that X  and Y are not independent.

Question 2

Consider the zero-mean MA(1) process Xt  :

Xt  = ut + δut-1     where ut  i~.i.d  N(0, σu(2))

a [5 Marks] Find E[Xt], Et [Xt+1], Et [Xt+2]

b [5 Marks] Find √0  = Var[Xt]

c [15  Marks] Derive  the  autocorrelation  function  (ACF).  Now,  imagine you  have a parameter estimate of δ = 0.70.  Plot the autocorrelation function as a function of the number of lags.

Question 3

a [5  Marks] Assume daily returns that are normally distributed with constant mean and variance, i.e., they are given by

Rt+1  = σνt+1

νt+1 i~.i.d N(0, 1)

where the time increment t + 1 is 1-day.  Derive the following formula for the Value-at- Risk at the α% (VaR) critical level and 1-day horizon.

where Φ is the standard normal cumulative density function.

b [10 Marks] Describe the ‘historical simulation’ and RiskMetrics approaches to mea- suring Value-at-Risk.

c [10 Marks] The expected shortfall ESt α +1 at the critical level α% and 1-day horizon can be defined as

Using the VaR formula from part  (a) derive the following formula for the 1-day ex- pected shortfall at critical level α

where φ is the standard normal probability density function.  Hint: From the properties of the normal distribution we know that

if z is normally distributed.

Question 4

a [5 Marks] Roberts (1967) defines three types of information set available to investors:

(i) weak form eflciency; (ii) semi-strong form eflciency; (iii) strong form eflciency. Report a definition for each of these.

b [5 Marks] To which information set, if any, do the following variables belong?

Stock prices today.

The risk free rate today.

Next year’s production figures just approved by a company’s board of directors.

The nominal size of the short position George Soros has in European equity.

Stock prices tomorrow.

c [5  Marks] What is the eflcient market hypothesis statement according to Malkiel (1992)?

d [10 Marks] Black (1986) gives an alternative definition of market eflciency. What is it and why is Black’s definition diflcult to test?




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图