代做ETW1001 Introduction to Statistical Analysis代做留学生SQL语言

ETW1001 Introduction to Statistical Analysis

Group Assignment

Semester: Oct Intake, 2025

Due: Monday, 14 January 2025, 11:55 p.m.

The unit learning objectives of this assignment are:

Assess the relevance and usefulness of predictive modelling to address business and economic challenges.

Communicate statistical results to stakeholders effectively to propose business and economic solutions as a team.

This assignment is worth 30% of your final mark for this unit. The total number of marks for this assignment is 80.

INSTRUCTIONS

1.     Make sure that you regularly make back-up copies of your work. Computer, disk,  or  cloud  problems  will not be  accepted  as  valid  reasons  for  late submissions or requests for extensions.

2.     Students  should  pay  particular  emphasis  on the narration,  and how the results are presented and interpreted. Students should endeavour to ensure that the report is complete and well-composed. Poor presentation, poor command of English writing and/or failure to comply with instructions may result in a mark penalty.

3.    Your answer to the questions should be no more than 15 pages (inclusive of graphs and tables). Any part of the report beyond the 15-page limit will be struck out and not marked.

(a)  Use default format, paragraph, and margin settings.

(b)   Font size: 12

(c)   At least 1.15 line spacing between lines.

(d)   Reference list is not counted in the 15-page limit.

(e)   Penalties may apply if the assignment does not conform to the formatting guide- lines.

(g)   All  workings  and  relevant  Excel  output  must  be  clearly  shown  where appropriate as marks will be awarded for workings. Make sure all your workings are included in an Excel file with proper labels. All tables and visualisations must be included in the written report. The presentation of output must be in reasonable size and readable.

4.     Students must uphold academic integrity at all times. Any students caught for cheating, plagiarizing or permitting others to plagiarize their work will be  reported  to  the  Responsible  Officer  for  academic  misconduct  in accordance  to  the   Student  Academic  Misconduct  Procedure.   Severe penalties may apply resulting from the investigation.

5.     Generative AI tools are restricted for certain functions in this assessment  task. In this assessment, you can use generative artificial intelligence (AI) in order to conduct research pertaining to the assessment task only. Any use of generative AI must be appropriately acknowledged (see Learn HQ).

6.     All submissions will be via Moodle by 14th January,2025 [before 11.55pm]

(a)   Please type your report in Microsoft Word, save it as a PDF file, and submit the PDF document. Additionally, you must submit the accompanying Excel document. In total, you are required to submit two files:

1.  The PDF file (containing all relevant answers). Written report (Format: .pdf) [Should have the name and student ID for each member]

2.  The Excel file. Excel workbook (Format: .xlsx). Important:

All answers must be included in the PDF file. Only the PDF file will be graded. Any answers found exclusively in the Excel file will not be marked.

(b)   You will also be required to put your assignment through a Turnitin report. The similarity index should not be more than 20%. Note that this is only a  rough guideline we understand that some common usage of phrases and sentences may contribute to the similarity index. Students should not be worried for this particular instance.

Problem Scenario

Presume that you are a real estate agent working for an international property firm. Your task is to investigate the variables that are relevant in determining house selling prices. The firm has access to a large dataset, and you have selected a sample of 1,250 properties for your analysis.

As a property agent, your primary role is to identify and analyze the significant factors that influence house selling prices. By understanding these variables, you can provide valuable insights to clients, assist in strategic pricing decisions, and support the firmin staying competitive in the real estate.

Data

Download the data file “HousePrice” from Moodle

The key dependent variables are as follows:

The file contains the following variable:

Selling Price: Selling house price in $. [Dependent Variable]

Land Value : Land area value in $.

Building Value  : Total building value in $.

Basement: basement room in square feet.

Baths: Number of bathrooms.

[Note: Most bathrooms contain a toilet and sink as well as a bathtub and shower]

Toilets: Number of toilets.

[Note: In most houses, the toilet is located within the bathroom. However, in newer homes, it is increasingly common to find toilets situated in separate spaces, such as a powder room or a dedicated hall area, which contain only a toilet and a sink, without a bathtub or shower.]

Fireplaces: Number of fireplaces in a house.

Beds: Number of bedrooms in a house.

Rooms: Rooms without bed such as power room, TV room etc.

AC:  Indicator variable for house being air-conditioned (1 = air-condition, 0 = otherwise).

Age: age of the house.

Your group is required to use a subset of the survey data to answer the following questions.   Specifically,   your   sample   should   consist   of   250   consecutive observations, starting from the observation whose ID matches the last three digits of any group member’s  student number. For example, if a group member’s student ID is 20275749, group should start with observation 749 and include observations up to 998.

Question 1 [Total 40 marks]

a)     Construct  an  appropriate chart to illustrate the relationship between the dependent variable on the land value, building value, age of the house, toilets and air condition. Describe the relationship suggested by the charts in part (a). [10 marks]

b)    Run a Simple Linear Regression (SLR) with the dependent variable on the land value, building value, age of the house, toilets and air condition. The  summary output of the SLR should be shown. [5 marks]

c)     Report the estimated equation from part (b). Label each of the models as Model 1, Model 2, Model 3, Model 4, and Model 5. [5 marks]

d)    Interpret the estimated values of the regression coefficients for Model 1 and Model 2 only. [Hint: required to interpret intercepts and slopes] [4 marks]

e)     Obtain a 95% confidence interval for the slope coefficient in Model 1 [You required to show the calculation for the confidence interval. Answer direct from the excel output will not be awarded any marks. You are required to show the working] Interpret your results. [4 marks]

f)     What is the value of the coefficient of determination for Model 1? Interpret this value. [2 marks]

g)    Test the null hypothesis that land value is not a significant predictor of the selling house prices at a 5% level of significance against the alternative that are significant. Use the critical value approach. Carefully show all steps. [4 marks]

h)    Using  a  p-value  approach  at  a  5%  level  of  significance,  test  the  null hypothesis that building value not a significant predictor of the selling house prices at a 5% level of significance against the alternative that it has a significant positive effect. Carefully show all the steps. [2 marks]

i)     Predict the selling price of a house if the building value is $70,000. [1 mark]

j)     Predict the selling price of a house if the building value is $156,000. [1 mark]

k)    Explain whether the predictions in (i) and (j) are reliable. [2 marks]

Question 2 [Total 28 marks]

a)     Run a Multiple Linear Regression (MLR) with a house selling price as the dependent variable with ALL the independent variables. Name this model as Model 6. Summary output of the MLR should be shown. [3 marks]

b)    Formulate  an  appropriate  Multiple  Linear  Regression  estimated  model [Model 6] that predicts the selling house price. [4  marks]

c)     Write down the estimated Multiple Linear Regression equation based on Model 6. [3 marks]

d)     Interpret the estimated coefficient of the land value and air-condition using Model 6. [4 marks]

e)     What is the expected sign for age of the house? Explain your reasoning. [2 marks]

f)     Using  a  p-value  approach  at  a  5%  level  of  significance,  test  the  null hypothesis that age of the house is not a significant predictor of the selling house prices at a 5% level of significance against the alternative that it has a significant negative effect. Carefully show all the steps. [4 marks]

g)    Without doing any calculation which variables contribute significantly to the prediction of house selling price? Why? [2 marks]

h)    By removing all the insignificant variables from Model 6 and then form a Multiple Linear Regression with significant variables. [Name it as Model 7]. Summary output should be shown. [2 marks]

i)     Using  an  appropriate  method  compare Model  6 and 7. Which model is better? Explain. [2 marks]

j)     Using  Model  7,  predict the house  selling price by  substituting the  fifth observation from your sample. [2 marks]

Question 3 [10 marks]

Based  on  your  analysis  above,  write  a  concise  report  summarizing  the  key findings for your firm.

Your report should highlight the significant variables influencing house selling prices  and  explain  how  these  factors  can  guide  strategic  pricing  decisions. Emphasize the practical implications of the results, such as how the insights can help  the  firm  optimize  pricing  strategies  for  the  house  sellers  and  remain competitive in the real estate market. Additionally, discuss how these findings can  be  used  to  identify  trends,  improve  client  recommendations,  practical implications of the results,  enhance the firm's overall market positioning and recommendations. [Your report should be less than 250 words]

Your report should have following scopes:

o   An introduction to the topic

o    Key findings or analysis

o   A conclusion or summary

o   References if any [10 marks]

Formatting [2 marks] The overall report should provide a concise and consistent format with a clear label for each figure. Remember, you are representing your organization to present this study so prepare your report that will be detailed and suitable for readers.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图