代写ECON6008 Homework #1代做R编程

ECON6008 Homework #1

Due: Feb. 11, 2025, 2:00pm

You are allowed to work in a group of no more than 5 (including 5) students and submit one copy of your assignments. You can also work alone. If you work in a group, you must state all the group members’ names clearly on the cover page.  All group members will receive equal marks. You need to submit an electronic version of your assignment to tianxie@smu .edu .sg.  You can use any software to complete the assignment. For the coding related questions, you must present your codes with necessary comments and put them in the assignment as appendix.

1.  (10 marks) Consider the following regression model

y = β0  · i + e,

where y is a n × 1 response variable, i = [1, 1, ..., 1]T is the n × 1 constant term with β0 being the associate coefficient, and e is a vector of error terms. Prove that the OLS estimate of β0 is simply the mean of y.

2.  (30 marks) Describe how we determine the predictor importance in regression tree and bag- ging tree. Discuss their similarities and differences carefully. Explain why one is more reli- able than the other one.

3.  (60 marks) This question is about the larger VIX data set vixlarge.csv that contains the VIX data and the associated dates.

(a)  (10 marks) Plot the VIX data against date in line.   Clearly label the horizontal and vertical axises.

(b)  (10 marks) Pick 5 nodes and fit the data using one of the regression splines.  State the method you choose clearly and show the plot.

(c)  (20 marks) Let the dependent variable y be the VIX and the first and the second columns of the independent variable X be the intercept term and the lag of VIX (set x0   = 0). Conduct a one-step-ahead rolling window exercise.

i.  Set the window length at 3000 and make forecast on the next period y t+1 . ii.  Start from the beginning and roll until the end.

iii.  For each roll, we make forecast using ridge and lasso methods with tuning param- eter λ = 1, 10 for each method. In total, we compare 4 methods.

iv.  Comparing the forecasts with the actual true values of y t+1 .  Compute the mean squared forecast errors and the mean absolute forecast errors for the four methods and report them in a table.

v.  Which method has the best performance and which one has the worst?  Provide your understanding and explanation of the results.

vi.  Come up with an algorithm that can beat the best performing method stated in question v. Clearly describe your motivation, the details of the algorithm, and the results.

(d)  (20 marks) We now consider a more general forecasting exercise with model

yt+h  = f (xt) + ut+h,         for t = 1, ..., n — h

where his the forecasting horizon.  Note that Q3(c) is the special case with h = 1 and f (·) being the ridge or LASSO estimator. We now replicate Q3(c) with h = [1, 5, 10, 22] using LASSO and the regression tree.  Choose your own tuning parameters this time, state them clearly, and report your forecasting results in a table. What do you observe?






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图