代做OM 252, Winter 2025 HW 3调试SPSS

OM 252, Winter 2025

HW 3

Assigned: Jan 23, 2025, 9 AM

Due: Jan 29, 2025, 11:59 PM

Instructions: Each assignment will include a PDF file (like this one) with the assignment questions and an Excel file with an Answers sheet and any data or models we provide. You must download both the PDF and Excel files. You must enter your answers in the Answers sheet of the same Excel file you downloaded, then save and upload the Excel file. You must upload the same Excel file you downloaded. Further instructions are provided in the Online Assignment Tools Guide (see Assignments on Canvas).

Put your answers in the appropriate cells (salmon-colored cells) in the Answers sheet. Use paste special … values for all numerical answers. The other cells in the Answers sheet are locked, which means you won’t be able to enter values into those cells. Do not change the format of cells in the Answers sheet. Save your file with the appropriate name and in the proper format (“HW#_ID.xlsx”).

Marking will be based on the answers in the Answers worksheet of the file you upload. We will only look at the rest of the file if there is an appeal (and even then, the answers in the Answers sheet take precedence.) If you wish to appeal a mark, the uploaded file must include your supporting work for each question. It is a good idea to make one worksheet for each question.

Total points: 35, of which 2 points are for following the submission instructions provided above.

Forecasting Number of Building Permits Issued in Edmonton

In this assignment, we use a different data set related to the number of building permits issued by the City of Edmonton. Our interest is in forecasting the number of permits issued in the future. The “Data” sheet shows the total number of permits issued for every month from January 2015 to December 2024.

You will use this data for all of your work on this assignment. Here is a plot of the monthly data:

Let us begin by plotting the data.

From Figure 1, We observe an annual seasonal pattern in the data. The number of permits issued is substantially higher between April and November. Between December and March, the number of permits issued dropped significantly. This suggests that a forecasting method incorporating seasonality should perform better than methods ignoring seasonality. First, we will compare the SES, DES, and TES  methods in terms of one-month-ahead forecasts and then forecasts for two years into the future using the holdout strategy.

Part 1: One-day-ahead forecasts

1.    (3 pts.) Using the data provided in the “Data” sheet, calculate the average number of permits issued each month from 2015 to 2024.

In this part, we will perform. a within-sample comparison of SES, DES, and TES based on how these methods perform. at one-month-ahead forecasting for January 2016 to December 2022. We leave out January 2015 to December 2015 for the initialization of TES. We leave out January 2023 to December  2024 for an out-of-sample comparison of the methods; see Part 2 of the assignment.

Note that when you are using SES and DES you can start forecasting earlier than January 2016, but in order to have a fair comparison between the three methods, we calculate the RMSE only for January 2016 to December 2022. We also calculate the RMSE for January 2021 to December 2022 as it gives us a more recent, and a more relevant, performance measure.

2.    (1 pt. feasibility, 3 pts. consistency, 1 pt. optimality) Use the SES method to calculate the one- month-ahead forecasts for January 2016 to December 2022. Use solver to find the value of LS that minimizes the RMSE for January 2016 to December 2022. Keep LS in the range 0.05 to 0.95. Report the following:

•    LS

•    RMSE for January 2016 to December 2022

•    Forecasts for January 2021 to December 2022

•    RMSE for January 2021 to December 2022

3.    (1 pt. feasibility, 3 pts. consistency, 1 pt. optimality) Use the DES method to calculate the one-month-ahead forecasts for January 2016 to December 2022. Use solver to find the values of LS and TS that minimize the RMSE for January 2016 to December 2022. Keep LS and TS in the range 0.05 to 0.95. Report the following:

•    LS, TS

•    RMSE for January 2016 to December 2022

•    Forecasts for January 2021 to December 2022

•    RMSE for January 2021 to December 2022

4.    (1 pt. feasibility, 3 pts. consistency, 1 pt. optimality) Use the TES method to calculate the one-month-ahead forecasts for January 2016 to December 2022. Use solver to find the values of LS, TS, and SS that minimize the RMSE for January 2016 to December 2012. Keep LS, TS, and SS in   the range 0.05 to 0.95. Report the following:

•    LS, TS, SS

•    RMSE for January 2016 to December 2022

•    Forecasts for January 2021 to December 2022

•    RMSE for January 2021 to December 2022

Part 2: Holdout analysis with multiple-days-ahead forecasts

In this part, treat January 2016 to December 2022 as the training data and January 2023 to December 2024 as the holdout data.

5.    (5 pts.) Use the SES method to compute forecasts for January 2023 to December 2024. Use the value of LS that you found in Question 2. Report the following:

•    Forecasts for January 2023 to December 2024, calculated assuming that the learning phase ends at the end of December 2022

•    The RMSE for January 2023 to December 2024

6.    (5 pts.) Use the DES method to compute forecasts for January 2023 to December 2024. Use the values of LS and TS that you found in Question 3. Report the following:

•    Forecasts for January 2023 to December 2024, calculated assuming that the learning phase ends at the end of December 2022

•    The RMSE for January 2023 to December 2024

7.     (5 pts.) Use the TES method to compute forecasts for January 2023 to December 2024. Use the LS, TS, and SS values found in Question 4. Report the following:

•    Forecasts for January 2023 to December 2024, calculated assuming that the learning phase ends at the end of December 2022

•    The RMSE for January 2023 to December 2024

8.     (For practice and will not be marked) Based on the analysis you have done, which method do you recommend?





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图