代写MIE1628 Assignment 1代做Java程序

MIE1628

Due Date: Feb 8, 2025

Assignment 1

Clustering Techniques with Hadoop MapReduce (70 marks)

•    No submission is accepted via email. We have no exception.

•     Students are responsible for submitting the correct files on time.

•    Assignments submitted up to 48 hours late will incur a 20% penalty.

•    Your grade will be zero if you submit your answer after 48 hours.

Contact your TA for any questions related to this assignment or post clarification questions to the Piazza platform.

Java programming language is recommended for this assignment, but you can use python as well. This assignment explores the application of k-means clustering and canopy selection within the MapReduce framework. It emphasizes a deeper understanding of the algorithms, their limitations, and efficient implementation strategies. All code should be well-documented and follow best practices. You must clearly explain your design choices and justify your implementation decisions in your report.

Part 1: Line Counting with MapReduce (20 marks)

1.   (15 marks) Implement a MapReduce program to count the number of lines in a large text file (shakespeare.txt). Analyze the performance of your implementation, considering factors  such  as  the  number  of  mappers  and  reducers,  input  file  size,  and  network communication overhead. Provide a detailed performance analysis, including graphs as needed and a discussion of optimization strategies. (Implement using Hadoop MapReduce)

2.   (5 marks) Propose at least one optimization strategy to improve the efficiency of your line counting MapReduce program. Justify your choice of optimization and quantify its impact on performance. (Describe in words)

Part 2: K-Means Clustering on MapReduce (30 marks)

3.   (5 marks) Propose a distributed k-means clustering algorithm using MapReduce. Use the provided dataset (data_points.txt). Your implementation should handle a variable number of  clusters.  Thoroughly  explain  your  algorithm,  including  the  partitioning  strategy, centroid calculation, and convergence criteria. Discuss the choice of distance metric and its rationale. (Describe in words)

4.   (20  marks) Experiment with different values of k = 5 and 9). For each k, report the cluster centroids, the number of iterations required for convergence (or the maximum iterations  reached),  the  computation  time,  and  a  qualitative  analysis  of the  resulting clusters. Visualize your results where possible (e.g., scatter plot of data points with cluster assignments). Analyze the impact of k on the quality of the  clustering results  and the computational cost. (Implement using Hadoop MapReduce)

5.   (5 marks) Critically evaluate the performance of your k-means implementation. Discuss the impact of data distribution and the choice of distance metric (Euclidean, Manhattan, etc.) on the algorithm's performance and convergence. Analyze the scalability of your implementation – how does runtime change if you increase the dataset size? (Describe in words)

Part 3: Canopy Clustering and Optimization (15 marks)

Read the provided paper, research as needed and then answer the below questions in words.

6.   (5 marks) Explain the advantages and disadvantages of using k-means clustering with MapReduce. Discuss the trade-offs between parallelization, communication overhead, and the inherent limitations of the k-means algorithm itself. (Describe in words)

7.   (5 marks) How do you implement Canopy Clustering as a pre-processing step fork-means. Justify your choice of distance metrics for the canopy and k-means stages. Explain how your implementation reduces the number of distance comparisons in the subsequent k- means phase. Clearly explain the parameters used for Canopy Clustering and their impact on the results. (Describe in words)

8.   (5 marks) How do you integrate Canopy Clustering into your MapReduce-based k-means algorithm. Compare the performance (runtime and cluster quality) of k-means with and without Canopy Clustering as a pre-processing step. (Describe in words)

Deliverables:

•     (5 marks) A detailed report explaining your approach, methodology, results, analysis, and conclusions. Include visualizations, tables, graphs,  and performance measurements  as appropriate.

o  Your report  should  demonstrate a clear understanding of the algorithms, their limitations, and the practical challenges of implementing them in a distributed environment.

o  A code file (well-commented and organized) should be submitted along with the runtime output screenshots.

o  Include references as appropriate.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图