代写P8438 Design and Conduct of Observational Epidemiological Studies帮做R语言

Design and Conduct of Observational Epidemiological Studies

3 Credits

P8438

COURSE DESCRIPTION

As a basic science of public health, epidemiology is responsible for identifying causes of disease that can guide the development of rational public health policies. The accuracy of the information provided by epidemiologic studies is therefore of central concern. Epidemiologic methods are the tools we use to make valid causal arguments.

This course builds upon the methods introduced in the Core (or P6031 and P6400). The primary objective is to provide students with the basic tools necessary to conceptualize the design of, and interpret the results from, observational epidemiologic studies.

COURSE LEARNING OBJECTIVES

By the time you complete this course, you should be able to:

•    Articulate the relationship between association and causation

•    Apply causal concepts to the design and interpretation of epidemiologic studies

•    Calculate and interpret basic measures of association

•    Develop testable research hypotheses from a causal theory

•    Recognize and explain the effects of non-exchangeability

•    Distinguish among the sources of non-exchangeability

•    Choose study designs appropriate for specific research questions

•    Identify sources of, and methods to avoid, invalidity in epidemiologic research

•    Relate these sources of invalidity to the definition of a cause

•    Estimate the likely direction and magnitude of non-exchangeability in specific studies

•    Test research hypotheses using stratification, standardization, and logistic regression

•    Interpret logistic regression output to address causal questions

•    Define all the terms presented in the weekly glossaries

•    Critically evaluate the limitations of current epidemiologic methods

•    Work efficiently and productively in a team setting.

ADVANCED PREPARATION

The prerequisites for this course are either the Quantitative Methods Core (P6031) or both Introduction to Biostatistics (P6103/4) and Principles of Epidemiology (P6400).

Students entering this course are assumed to be able to:

•    Calculate basic measures of association between exposures and disease

•    Interpret data in 2 by 2 tables

•    Identify major epidemiologic study designs

•    Define confounding, selection bias and information bias (aka measurement error).

COURSE REQUIREMENTS

Class Norms

A goal of this class is to work in teams to have open and robust discussions of the course material. Each team will discuss and develop team norms, which we will synthesize into class norms, to help create an environment where vigorous intellectual arguments can take place.

AI Policy

Academic integrity is a core value at Mailman. For this reason, the use of generative artificial intelligence (AI) sites, (for  example, but not only, Chat GPT) to complete an assignment or exam is not permitted unless the course instructor has provided clear written instruction about the use of generative AI.

Use of generative AI to complete an assignment or exam without written instruction from the course instructor will be regarded as the same as receiving unauthorized assistance from another person and can be reported as an academic integrity violation.

Required Course Materials

Savitz, David A. and Wellenius, Gregory A. (2016) Interpreting Epidemiologic Evidence: Connecting Research to Applications.  The textbook is available for purchase at the bookstore.

The complete text is also available online through Columbia’s library, at this link:

https://academic.oup.com/book/8266

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图