代做STATS 763 Advanced Regression Methodology FIRST SEMESTER, 2019帮做Python语言

STATS 763

STATISTICS

Advanced Regression Methodology

FIRST SEMESTER, 2019

1. (24 marks; 4 each) Define or explain briefly in the context of this class

(a) facetting

(b) ridge regression

(c) collider

(d) apparent error

(e) competing risks

(f) sparse matrix

2. (24 marks) You have data from a series of randomised clinical trials (experiments) of related drugs to prevent heart attacks:  that is, people are recruited into an experiment and then randomly assigned to one of two treatments. Y is a binary variable indicating heart attack, D is a factor variable with m + 1 levels 0, 1, . . . , m indicating which drug the person received (with D = 0 for no treatment), and G is a factor variable with k levels 1, 2, . . . , k indicating which trial the person was in. You fit two models

model1  <- glm(Y~D, family=binomial(log))

model2  <- glm(Y~D+G, family=binomial(log))

(a) (4 marks) What is the interpretation of the coefficient labelled D1 in the output of model 1?

(b) (4 marks) What is the interpretation of the coefficient labelled D1 in the output of model 2?

(c) (8 marks) Explain why the coefficient labelled D1 in model 2 has a causal interpretation, but the coefficient labelled G3 does not have a causal interpretation.

(d) (4 marks) What is the variance function for this generalised linear model?

(e) (4 marks) Does the link function we are using give the natural parameter for the expo- nential family?

3. (24 marks) A popular model for rainfall combines a logistic regression for whether rain occurs or not and a Gamma regression for the amount of rain if any occurs.  Consider these two models for rainfall amount fitted to daily data from Auckland, where Amount . mm .   is the amount of rain in millimetres, rain indicates whether there was rain on that day, and month is the month (1–12)

model0  <-glm(formula = Amount. mm.~1, family = Gamma(log), data = auck, subset=rain==TRUE)

model1<-glm(formula = Amount . mm . ~sin(month * 2 * pi/12) +

cos(month  *  2  * pi/12),  family  =  Gamma(log), data  =  auck,  subset=rain==TRUE)

model2<-glm(formula = Amount. mm.~factor(month),

family  =  Gamma(log),  data  =  auck,  subset=rain==TRUE)

The likelihood ratio p-value testing model 2 against model 1 is 0.056, the likelihood ratio p-value testing model 1 against model 0 is 0.047, the AIC for model 0 is 2478, the AIC for model 1 is 2473, and the AIC for model 2 is 2468.

(a) (4 marks)The intercept in model 0 is 1.86. What is the interpretation of this value? (b) (5 marks) Is model 2 nested in model 1? Explain.

(c) (6 marks) Which model would you expect to have lowest out-of-sample prediction error for the amount of rain on days when there was rain? Explain.

(d) (4 marks) The dispersion parameter in model 0 is estimated as 2.35. What, according to the model, is the variance of the amount of rain on days when there is rain?

(e) (5 marks) An alternative model is a (Normal) linear model for the logarithms of the non-zero rain amounts. How would the interpretation of the coefficients for this model difer from the Gamma model?

4. (24 marks) Researchers studying autism spectrum disorder (ASD) were looking for biochem- icalways to diagnose ASD in infants where current diagnostic methods can’t be used reliably. They measured concentrations of 87 chemicals in the blood of 60 children (not infants) diag- nosed with ASD and 60 control children who did not have any diagnosis of ASD or any other neurological or psychiatric illness. They used the lasso (L1-penalised maximum likelihood) to fit a logistic regression model predicting ASD diagnosis from the 87 predictor variables. Predictions from the model had 95% sensitivity and 95% specificity

(a) (6 marks) Write down the objective function that is being minimised (you can write L(β; Y) for the binomial likelihood at parameter values β).

(b) (6 marks) Give two advantages that are relevant to this analysis of the lasso/L1  penalty approach over stepwise logistic regression

(c) (6 marks) The size of the penalty was chosen by crossvalidation.  Briefly explain what cross-validation is.

(d) (6 marks) In the population as a whole, about 1.5% of children end up diagnosed with ASD. Assuming that the sensitivity and specificity are the same in the population as in the experimental sample, what proportion of those predicted by the model to have ASD would end up with a diagnosis of ASD by existing criteria.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图