代写GGR 203 – INTRODUCTION TO CLIMATOLOGY代做Statistics统计

GGR 203 - INTRODUCTION TO CLIMATOLOGY

1.1  Definitions

1.1.1 Climatology: the study of the global climate system, including the processes responsible for maintaining climate at different scales, and a description of the climates of different regions and environments

1.1.2 System: a set of components that interact with each other.

“A” and “B” form part of a system if “A” influences “B” and “B” influences “A”

1.1.3 Climate system: Atmosphere

Oceans

Cryosphere     -    sea ice

-     snow cover

-    alpine glaciers

-    ice sheets (GI, AIS today)

Biosphere

Lithosphere (Earth’s crust)

See Table 1 for a matrix of interactions between all possible pairs of these components.

To learn this table, I suggest making a list of the kinds of effects seen for each component (rows), then learn where (which column) they apply.

The sun is not part of the climate system … .

Rather, it is an external forcing.

There is a heat flux from the interior of the Earth (due to the hot core) to the surface of about 0.3 W/m2. This flux is also an external forcing (it is external to, or not part of, the climate system) eventhough it is physically surrounded by the system components. This flux, although 1000 times smaller than the heat input from the Sun (as we’ll see later) nevertheless notable influences the climate system at the time scale of glacial-interglacial climate oscillations.

1.1.4 Climate: the mean state of the climate system plus the variability and other statistics. We can examine the mean and variability of

-temperature

- winds

- pressure

- rainfall, soil moisture

GGR 203: Table 1. Matrix of interactions between components of the climate system. Given in each cell is the influence of the component listed in the row on the component listed as the column heading.

Atmosphere

Oceans

Cryosphere

Biosphere

Lithosphere

Atmosphere

Winds,

precipitation,

reduction of

amount of solar

radiation reaching ocean surface.

Temperature,

snowfall, winds (moving sea ice around or

blowing snow), amount of solar

radiation reaching the surface.

Temperature, precipitation,

amount of solar

radiation reaching plants,

proportion of direct and

diffuse solar radiation.

Temperature and moisture

affect

mechanical and chemical weathering,

which

removes CO2 from the atm.

Oceans

Source of moisture, transports heat,

source of S aerosols, N2O and other gases, sink or source of

CO2. S aerosols

affect solar-radiation properties of clouds. Release of CO2 to

seawater occurs

when carbonate

rocks form, affecting atmospheric CO2

concentration

Heat transport by currents affects

temperatures and thereby the extent

of sea ice,

currents transport sea ice, rising sea level causes ice sheets that reach the edge of

continents (i.e., Greenland and Antarctic) to

calve (break off)

Ocean

temperature, salinity, and acidity affect marine biota.

Transport and deposition of sediments,

eventually

forming new rocks.

Cryosphere

Ice and snow have a cooling effect by

reflecting solar

radiation; sea ice

suppresses heat

transfer from a

relatively warm sub- ice ocean (-2°C) to cold Arctic winter

air; ice sheets alter

wind flow and precipitation patterns.

Air-sea exchange of heat and moisture is suppressed by sea

ice. Sea ice

formation locally

increases surface

water salinity as

salt is ejected from the freezing sea

water, inducing

sinking of water.

Salinity decreases

in regions of net sea ice melting.

Forests

cannot grow under ice

sheets.

Ice sheets

cause sinking of the Earth’s surface over aperiod of

10s of

thousands of years.

Traditionally, climate refers to the state of the climate system near the Earth’s surface

For agricultural and natural systems, the variability of temperature or rainfall from one year to the next or within the growing season can be just as important as the mean

Because climate is the statistical properties of the climate system, it needs to be based on a sample. By convention, climate statistics (means, variabilities) are based on a 30 year sample.

Thus, a change in temperature from one year to the next, or even from one decade to the next, is not a change in climate. Rather, it is part of the variability that defines that climate.

1.1.5 Meteorology: the study of the day-to-day variations in the state of the atmosphere (“weather”).

To predict the future weather, one starts from specific observed initial conditions and then one computes the evolution of that state to a specific time in the future.

Climatology, on the other hand, is concerned with means and variabilities averaged over a period of time (30 years). The climate depends strongly on the boundary conditions (solar energy coming in at the top of the atmosphere, the   nature of the land or ocean surface).

Predicting a change in the climate, therefore, is quite different from the problem of predicting the weather. The fact that we can’t predict the weather more than one week in advance is completely irrelevant to the problem of predicting changes in climate 100 years from now in response to, say, an increased in atmospheric CO2 concentration.  [hockey analogy]

1.2 Overview of past natural climatic change

Because we have defined climate in terms of both the mean and variability, then if either the mean or even just the variability of some climate variable (such as temperature) changes, the climate has changed.

Figure 1.1 in the figures file for Chapter 1 gives an overview of estimated change in global average temperature over the past 500 million years.

Key points – there were 4 episodes of several million years duration with periodic

glacial-interglacial oscillations during the past 500 million years, the mostrecent being during the past 2 million years roughly.

- at other times temperatures were 10-14°C warmer than today

- during the last 700,000 years there were 7 saw-tooth shaped glacial-interglacial cycles of about 100,000 years duration, with a gradual, oscillatory approach into full glacial conditions, followed by abrupt (within 10,000 years) transitions to interglacial conditions

This is especially evident in Figure 1.2 for the past 400,000 yrs, from which it can also be seen that:

- atmospheric CO2  and CH4  (methane) concentrations varied as well, in such away as to reinforce the temperature changes (lower concentrations when it was getting   colder, and viceversa).

-the last ice age ended around 10,000 yrs ago, and temperatures reached a peak (maybe 1°C warmer than during the late 1800s) about 6000 years ago

Figure 1.3 compares lake level status (low, intermediate, and high), as deduced from geomorphic and other evidence, for two time periods compared to present: the peak of the last ice age (about 18,000 years ago) and the mid Holocene (6000 years ago). US SW much moister than now during the last ice age (with huge lakes where there are now only small remnants), while the Sahara desert and east Africa were much moister just 6000 yrs ago.

Returning to temperature, as seen from Figures 1.4 to 1.6,

- there had been a downward trend of about 0.2°C over the period AD 1000-1900

- the climate warmed by almost 1.0 C during the past 100 years (this is due without  question to human emissions of CO2  and other greenhouse gases to the atmosphere)

- the warming trend has been particularly large in polar regions

1.3       Overview of the present climate

Take note of the following information from the indicated figures:

Fig 1.7 – all layers and boundaries; temperature, heights and pressures of 1st  3 boundaries

Fig 1.8 – 1-cell early view vs 3 cells (names, locations of the 3 cells and the direction of   flow), names and directions of winds, names and locations of high and low pressure cells; qualitative variation of zonal mean surface P with latitude

Fig 1.9 – trade winds location, ITCZ as convergence of trade winds, shifts in location with seasons

Fig 1.10 – monsoon regions, locations with winter rain, summer rain, and double rain Fig 1.11 –seasonal reversal of winds over Tibetan plateau and east Asia

Fig 1.12 – the westerly jet stream – note shift in position and strength with seasons (poleward and stronger in winter, greater variation in NH than in SH)

Fig 1.13 – cross-section shows E-W average of the E-W (zonal) wind, where positive is from the west. Seasonal variation in position and strength are seen (much stronger and further equatorward during winter, especially in the NH) (much less variation in the SH). Notice easterly winds (negative values) in stratosphere in summer in both hemispheres

Fig 1.14 – January and July temperature patterns: large changes in polar regions, small changes in tropical regions, so there is a large equator-to-pole temp difference in winter, small difference in summer

Fig 1.15 – surface pressure pattern in Jan and July:  huge and strong high-pressure cell over Siberia in January, turns into weak low-pressure cell in July. Large lows in January centred over Iceland and the Aleutian Islands, largely gone in July. Strong high-pressure cell over N Atlantic in July (Azores High). High-pressure cells over mid latitude oceans, strongest in summer in both hemisphere.

Fig 1.16 – seasonal rainfall: ITCZ and march of the monsoons is evident

Fig 1.17 – rainfall extremes. Relative to the average precipitation, the extremes are strongest in dry regions. i.e., in the desert, it either doesn’train, or it pours.

Fig 1.18 – an example of the alternating pattern of extreme warm and extreme cold regions due to a distortion in the airflow. When there is strong airflow from the north somewhere (bringing cold weather), there has to be compensating strong airflow at some other longitude (bringing warm weather)

1.4       Physical basis of climate

We can subdivide the processes responsible for determining the state of the climate system into:

Radiative processes, involving:         - solar radiation

- Infrared radiation

Dynamics: -atmospheric and oceanic motions (winds and currents)

- Flow of ice sheets, crustal motions

Thermodynamics – deals with heat, internal energy, and work

- leads to the study of the vertical stability of the atmosphere

- leads to important relationships involving evaporation and absorbed energy at the Earth’s surface

Surface processes – evaporation

- exchange of heat and momentum with the atmosphere

- occurrence of ice and snow

Clouds are extremely important, as they strongly affect, and are affected by, all of the above sets of processes.

At yearly and longer time scales, biological processes play a very important role in climate

At geological time scales, coupled biogeochemical cycles also play a very important role. For example, the coupled carbon-phosphate cycles.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图