代做GGR203 – INTRODUCTION TO CLIMATOLOGY调试数据库编程

GGR203 - INTRODUCTION TO CLIMATOLOGY

2.0        Radiation

The radiation referred to here is the energy emitted by all matter warmer than 0 K in the form of electromagnetic (EM) waves.

2.1        What are EM waves?

They are coupled, oscillating, electric and magnetic fields that move out (at the speed of light) in all directions from an oscillating electric charge.

Speed of wave,  c = speed of individual crests and troughs

Frequency of wave, ν = number of crests or troughs that pass a given point per second

Wavelength,    λ  = distance between corresponding points on successive waves

Clearly,  c = λν

(because if, for example, we see 10 wave crests passing a point in one second and the wavelength is 10 cm, the furthest crest was 100 cm away at the start of the second)

For EM waves, c is fixed, so    λ  α   1/ν    (wavelength varies inversely with frequency)

Frequency of an electric scillator = number of up & down cycles it does per second Frequency of an EM wave = frequency of the oscillator that generated it.

THUS:  faster frequency oscillator  shorter wavelength of EM radiation

See Figure 2.1, illustrating the electromagnetic spectrum  - the division of radiation of all possible wavelengths into different categories. Visible light is one very small set of wavelengths within the spectrum, with different colours corresponding to different wavelengths (and hence, different frequencies)

(Note that violet is next to ultraviolet, and red next to infrared, with violet being of shorter wavelength and red longer wavelength).

When an EM wave encounters another charge, it tends to set that charge in motion – because the oscillating electric field causes an oscillatory force on the charge [force on charge = electric field x magnitude of charge]

Interaction of EM wave with a charge tends to set it oscillating at the same frequency as the   EM radiation (or not at all)

In so doing – the charge acquires energy

- the EM radiation is absorbed

To conserve energy, it must be that

- the EM radiation itself carries energy

- an oscillator loses energy when it emits EM radiation.

2.2    Emission of EM radiation

All matter contains electric charges (protons, electrons).

Although non-ionized atoms and molecules are electrically neutral (# protons = # electrons), the “centre of mass” of the positive and negative charges might not coincide. This gives an electric dipole.

Electric dipoles in atoms and molecules can arise in 3 ways:

1. From asymmetry of a molecule. Example: H2O:

-electrons are pulled toward the oxygen atom

2.From the presence of an electric field, which pushes electron and protons in opposite directions

3.From asymmetric vibrations. Example: CO2, a symmetric linear molecule        O=C=O

CO2 can vibrate symmetrically (both bonds being stretch at the sametime), asymmetrically in two ways: bending, or asymmetric bond stretching, where one bond shortens while the other lengthens, and viceversa

Heat is the random motion of molecules and atoms.

As all matter above 0 K is in thermal motion, and as all matter contains electric dipoles – all matter radiates EM radiation.

Consider a solidbody:

- At a given temperature, the atoms or molecules will oscillate at a given set of frequencies with a given set of amplitudes to there will a range of wavelengths at which radiation is emitted, corresponding to the frequencies of the oscillators 

As T increases,

- more energy goes into existing oscillation frequencies by increasing the amplitudes of the oscillations

-  oscillations at higher frequencies (↔ shorter wavelengths) can occur

Hence, as T increases, more EM energy is radiated (emitted), and the emitted radiation shifts to shorter wavelengths.

The relationship between temperature and the maximum amount of radiation that can be emitted in a given wavelength interval is given by the Planck Function:

where c = speed of light = 2.998 x 108  m/s

h = Planck’s constant

k = Boltzman constant

B(λ,T) is the energy emitted perm2  of surface area per μm of wavelength interval.

The energy emitted in a λ interval of width Δλ and centred at λ is

B(λ,T)Δλ     W m-2

For example, to estimate the amount of radiation between wavelengths of 1.00 μm and 1.02 μm, calculate

B(λ,T) using λ in the centre of the interval (1.01 μm) and multiply by Δλ=0.02 μm.

Sum this approach over many small intervals:

We will designate the different intervals and the wavelength at the centre of each interval by the subscript i, where i=1 for the first interval, i=2 for the second interval and so on up to the last interval, n.

The energy emitted in each interval i is B(λi,T)Δλi, and the total energy emitted is the sum of the radiation emitted in all the intervals. That is

Total energy emitted = 1 B(λ i  , T)Δ λ i       ~ “Area” under that curve, where the “area” has units = units

of height x units of width of each rectangle.

(in the above, ∑1 xi  is the standard summation notation and means add all the values of xi  (whatever xi is) from x1 to xn)

As stated above, the Planck function gives the maximum amount of radiation that can be emitted in a given wavelength interval. An object that emits this amount at all wavelengths is called blackbody.

Layout calculations for Q2 of PS1 in columns:

2.3      Radiation Laws Derived From the Planck Function  (or: properties of blackbodies)

1.  The emission at all wavelengths increases as T increases

2. As Δλ i  → 0, ∑Ni=1B(λi, T)Δλi → ∫0 ∞ B(λ, T)dλ = σT4

Total radiation emitted by a blackbody, B(T) = σT4,

where σ = 5.673 x 10-8  W m-2  K-4  is the Stefan-Boltzman constant, and the equation is called the Stefan-Boltzman Law

3. Wavelength at which maximum emission occurs decreases as T increases.

λmax = 2898/T   Wiens Displacement Law, T isin K and λ is in μm

At higher T, higher frequency oscillations – corresponding to shorter λ radiation – can be excited.

4. Almost all the radiation emitted by the Sun is at λ < 4.0 μm   Almost all the radiation emitted by the Earth is at λ > 4.0 μm

See Figure 2-2.

To recap – the Planck function gives the blackbody emission  - which is the maximum amount permitted at a given temperature. The ratio of actual emission (F(T)) to BB emission is called the emissivity, ε .

That is, ε = F(T)/σT4, so    11

F(T) = εσT4.   ε  ≤= 1 , ε = 1 for a BB

Emissivity at a particular wavelength is called the spectral emissivity, ελ .

The emission is F(λ,T) = ελB(λ,T)

2.4 Absorption of electromagnetic radiation

The fraction of total incident radiation absorbed by an object (or gas) is called the absorptivitya.

The fraction of incident radiation at a specific wavelength absorbed is called the spectral absorptivityaλ .

An oscillator will absorb a photon of a given frequency (wavelength) only if it can oscillate at that frequency. Likewise, it will emit at that frequency if it has enough energy (that is, if it is warm enough).

These ideas and others lead to Kirchoff’s Law:

a = ε,  absorptivity = emissivity

Also true at every wavelength:   aλ . = ελ .

If something is a good absorber at a given wavelength, it is potentially a good emitter too. For a BB, ε = 1 so a = 1. A blackbody absorbs all the radiation falling on it.

Although emissivity = absorptivity, this does not mean that emission = absorption

Absorbed energy = a I = ε I      … .. I depends on the temperature of the surroundings

Emitted energy   = εσT4                     … . depends on temperature of itself

2.5      Types of possible electric oscillators

As we have seen, emission and absorption of electromagnetic radiation involve oscillating electric charges or dipoles. These can arise in 3 ways:

-oscillation of electrons in their orbitals – v. high frequency, short λ radiation: 0.1-0.7 μm -vibration of dipole molecules – medium frequency, medium λ radiation: 0.8- 18 μm

-rotation of dipole molecules – low frequency, long λ rad’n mostly > 50 μm, some effects down to 12 μm The part of the electromagnetic spectrum of importance to climate is:

As electrons oscillate, or dipole molecules vibrate or rotate, they give offEM radiation but at the same time drop to lower energy levels.

Electron transitions/oscillations   - correspond to UV, Visible radiation

Vibrational transitions                 - correspond to NIR, IR

Rotational transitions                   - correspond to IR, far IR

Recall: a vibrating or rotating molecule will emit EM radiation only if it has a dipole (centre of positive charge distribution  centre of negative distribution)

2.6      Temperature

Temperature is a measure of the kinetic energy of atoms or molecules. This kinetic energy occurs as

-     Vibrations

-     Rotations

-     Translation = uniform. from one point to another

Only vibrational and rotational KE involves emission/absorption of EM radiation (and then, only if there is a dipole).

Conversely, if amolecule has a dipole but was simply moving at a uniform velocity (having translational kinetic energy only), it would not emit radiation.

Temperature is directly related to the translational KE but not the vibrational and rotational KE.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图