代做PADM-GP 4119 Data Visualization and Storytelling Spring 2025调试R语言程序

PADM-GP 4119

Data Visualization and Storytelling

Spring 2025

Course Description

In our increasingly data-reliant and data-saturated society, people who understand how to leverage data to generate insights have the power to change the world. Data visualization and storytelling is a crucial skill for policy and data analysts, communications and marketing professionals, and managers and decision-makers within nonprofits, social organizations, and the government. With the advent of visualization tools that do not require coding, data storytelling in the digital age is also an attainable skill set for people with varying levels of technical ability.

This hands-on introductory course will teach students how to develop meaningful data stories that reveal visual insights accessible for relevant audiences. Students will also learn the basics of Tableau, the industry standard in data visualization tools, to make sense of and visualize publicly available data. Students will leave the course with a portfolio of data visualization projects, analog and digital, that demonstrate the application of data storytelling. This course is intended for a beginner in data visualization and storytelling. Students with extensive prior experience should consult the instructor before enrolling.

Course and Learning Objectives

By the end of the course, students should be able to:

1.   Evaluate and critique data visualizations to become better consumers of data.

2.   Gain experience with presenting data insights through visualizations.

3.   Understand and apply data visualization and storytelling best practices to communicate accessible and meaningful insights.

4.   Develop meaningful data stories, gaining experience with the iterative process of data storytelling.

5.   Construct captivating and engaging visualizations, dashboards, and stories in Tableau.

Learning Assessment Table

Graded Assignment

Course Objective Covered

Participation

All

Lab Sessions

#1, #3 and #5

Data Viz Critique

#1 and #2

Analog Data Viz Project

#3 and #4

Final Viz Project

#1, #3, #4 and #5

Class Policies

This is a fast-paced, hands-on course with a lot of material condensed into seven weeks.

Students should be mindful of the following expectations to ensure that they are benefitting from the sessions and achieving intended learning objectives:

●   Attendance for the entire class session for all seven sessions is mandatory. Students should not register for the class if they anticipate any conflicts.

●   Active engagement during the sessions is essential. This course is designed to be a largely practice-based course. Students will maximize class learning if they come prepared having completed their assigned reading and training materials, developed a basic knowledge and theory of the weekly session topic, and are ready to engage during the course discussions, labs, and recitations.

●    Deeper engagement with the content outside of the class sessions will be needed to ensure students are able to complete assignments and projects successfully. Due to the condensed nature of the course, students will need to put in additional time outside of class sessions and should plan accordingly.

You are permitted to use generative AI tools in your written assignments, as long as you disclose the tool you used and any related prompts (including system prompts or other customization).

Please note that the onus for ensuring quality and accuracy of any output from a genAI model is entirely up to you –– you are ultimately held responsible for what you submit as your work in this class. Your work – especially your written work – must utilize the vocabulary and conceptual material that we introduce in lecture.

Required Materials

Readings: There is no textbook requirement for this class. Required readings will come from noteworthy articles, blogs and book excerpts; all materials are available online via hyperlinks on this syllabus or on our [SP25] Google Drive .

Software: To ensure successful lab/recitation participation, students are required to:

●    Have downloaded a Tableau Desktop license on your laptop (students are eligible for a free one-year license).

●    Ensure you have Microsoft Excel or Numbers on your laptop.

●   Sign up for a Miro for Education (Student) account.

Course Components

Readings

This course is designed to be a largely practice-based course. Therefore, it is crucial to come prepared to class with the basic knowledge and theory needed to have interactive discussions and a hands-on lab. (See Detailed Course Overview for more information for each week.) All materials are available online via hyperlinks on this syllabus or on our [SP25] Google Drive. Students must read assigned chapters/articles before coming to the respective session.

Orienting Discussions

Most course sessions will begin with a brief orienting discussion to recap best practices and lessons on data visualization and storytelling. Each discussion will build on the assigned reading material for that week and should be an opportunity to deepen knowledge and clarify questions.

Labs and Recitations

Most course sessions will include an experiential lab session. Students will also have an opportunity to hone their Tableau skills during a hands-on recitation immediately following each course session. To ensure successful lab/recitation participation, students are required to:

●   With the exception of Week 1, please complete all readings, pre-work assignments, and deliverables before class.

●    Ensure you have downloaded a Tableau Desktop license on your laptop (students are eligible for a free one-year license).

●    Ensure you have Microsoft Excel on their laptop.

Assignments

Assignments are formative, intended to help students understand data viz tools and best practices.

They consist of completion of lab-related deliverables, writing a data viz and dataset critique blog, and storyboarding the final project. Details on each assignment will be provided in the previous class session.

Projects

Unlike the formative assignments, projects are intended to assess mastery over data viz content and skills. Evaluation information can be found under Assessment Assignments and Evaluation. Projects will be uploaded via the blog tool on NYU Brightspace.

(1) Analog Data Viz Project

Students will create and present an analog “data postcard” by collecting and hand drawing data they collect over the course of several days/a week (see the Dear Data project for more information/ideas). This project is intended to reinforce the importance of communicating data insights effectively and creatively irrespective of the medium/tool. As students will not be using Tableau, students should be especially mindful about visualization execution (i.e., best  practices on chart types, color schemes, legends, so on). You will still be expected to submit your data analysis in Excel in addition to your analog data viz.

(2) Individual Final Project

All students must create a data story using Tableau that demonstrates their data visualization and storytelling skills through the course. While students are given free rein on content and execution, all data stories must contain at least three visualizations using Tableau Story Points. Data stories  must also serve one of two goals: to help the intended audience make data-driven decisions or to convey meaningful impact information to an intended audience. An accompanying blog post should briefly contextualize the data story and explain how it achieves one of the two intended goals. Students will learn more about the final project during Week 4.

To ensure that students are on track with their final project, the following completion deliverables will be enforced:

Week 05: Finalize final project topic and data set; bring storyboard idea (we will do a storyboarding workshop during the class session).

Week 06: Come to class with a rough Tableau workbook of your final project (there will be an opportunity to ask questions during class), and a Miro board of your storyboard.

Week 07: Final projects due.

Assessment Assignments and Evaluation

Participation (15%):

Students are required to attend all class sessions and come prepared for and actively participate in class. All students will begin with the full 15 points. If students miss class or are unprepared for a class session, a maximum of 3 points will be deducted each session. Given the remote nature of this semester, active participation will include asking/answering questions during the session (including   in chat) as well as contributing to discussion in breakout groups. Please contact the instructor if any issues arise during the semester.

Participation in recitation sessions is strongly encouraged and will help students develop their Tableau skills, but will not be counted toward your Participation grade. However, hands-on exercises in recitations 2 and 4 count toward Tableau lab assignments and should be completed/submitted in  NYU Brightspace, regardless of recitation attendance.

Homework Assignments (30%):

Assignments will be split into three components:

●   Tableau lab worksheets/workbooks (10%) – Graded on a 100-point scale based on completion.

●    Data viz critique blog post (10%) – Graded on a 100-point scale based on completeness and demonstrated understanding (see rubric on page 7).

●    Final project draft (10%) – Graded on a 100-point scale based on completion.

All homework assignments should be submitted via NYU Brightspace by the beginning of class on the specified due date. Late assignments will have 10 points deducted for everyday it is late (even if submitted the same day but after class, 10 points will be deducted). If you receive a zero on a homework assignment, you can resubmit one homework assignment per semester for a maximum of 50% the total value of the assignment.

Analog Data Viz Project (25%):

The project will be evaluated on two components: completion of the project, including a presentation during class and the analog data viz. The data viz evaluation rubric can be found on page 8. The presentation should explain the data story in a compelling, clear, and effective manner. Be sure to share your data file in addition to the viz. Students will have 2-3 minutes to present their data story to the class. Make sure to share details on your process in addition to the image of your analog data viz during your presentation.

Final Project (30%):

The final project will be evaluated on several components: the data story, the orienting blog post and presentation. The evaluation rubric can be found on page 9. Detailed instructions will be in our [SP25] Google Drive.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图