代做Carbon Storage (EAEE E4301) Fall 2024 Homework #1帮做R程序

Carbon Storage (EAEE E4301)

Fall 2024

Homework #1 (Due Monday, October 7th, 11:59 pm)

Homework Guidelines:

Your solutions to homework assignments will be submitted and graded through Gradescope (see the Gradescope tab on your Courseworks dashboard).

You will have two options for submitting your work in Gradescope, either: 1) upload individual scanned images of   your handwritten pages (e.g., using your phone), one or more per question; or 2) upload a single PDF that you create which contains the whole submission (e.g., merge files on your computer or phone with a software of your choice).

Please use the naming convention Lastname_HWxx.pdf when submitting your homework assignment. You may choose to type up your calculations, in which case show all your steps and highlight your solution. Note: During the upload, Gradescope will ask you to mark which page/s each problem is on (see example here). It is important that you follow that step for grading purposes.

It is acceptable to discuss problems with your colleagues, and questions are encouraged during office hours, but all work must be done independently. Make sure to clearly show all work on each problem and that your solutions are  presented in an orderly fashion. It is your responsibility to make your solutions easy to grade.

Topics/Chapters covered:

Class notes: Modules 1-4

Rackley, Chapter 2, 11-14 and other resources mentioned in class notes (e.g., Smit book)

Problem #1 (The Carbon Cycle) 15 pts

In class we reviewed the box model for Earth’s carbon cycle, also shown below. The percentages in white text boxes represent the percentage of emitted anthropogenic carbon accumulated in the  planet’s major reservoirs.

(a) Briefly explain why the surface layer of the ocean shows an increase in concentration of CO2, but the deep ocean does not.

(b) Why is there no percentage shown in the sediments and crust reservoir? How can we change this?

(c) Of the 9 Gt of anthropogenic CO2 emissions, how many Gt must we offset with CCUS technologies to offset rising temperatures (e.g. the greenhouse effect)? Don’t overthink - this is a quick calculation.

(d) Estimate the maximum storage capacity of 10 geologic formations with the following average properties: lateral area of 10 km x 5 km, height of 30m, porosity = 0.2, irreducible water saturation (Sw_irr) = 0.15, and in situ scCO2 density = 700 kg/m^3. Hint: Back of the envelope calculations are fine.

Comment on the magnitude of this storage capacity.

Problem #2 (Geology / porous media) 25 pts

The porosity of a sandstone (or soil for that matter) is heavily dependent on the grain size and packing arrangement, among other factors. See the below figure.

(a) Mathematically prove that the porosity associated with the simple cubic packing of equally sized spheres, shown in the above figure is ~0.48. Show your work for credit.

Does this value of porosity change if the grain size changes from a radius of 0.1 mm to a radius of 1.0 mm? How about permeability?

(b) Using the same logic, derive the porosity of either an orthorhombic or rhombohedral packing of equal spheres (your choice!), where the grains are shifted and porosity reduced. Show your work for credit.

(c) Name 2 other factors, physical and/or chemical, that can degrade porosity in a rock formation. Briefly (in a few words) explain why.

(d) Would you expect a slight increase or decrease in porosity in an over-pressured formation? Why?

Microscale grain packing arrangements: Top: Cubic packing of equal spheres. Middle: orthorhombic packing of equal spheres. Bottom: Rhombohedral packing of equal spheres.

Problem #3 (Geomechanics) 10 pts

The below left plot is a generic Mohr–Coulomb plot with failure envelope.

If you want to review geomechanics more, see Rackley Chapter 12.

Imagine that this Mohr–Coulomb plot represents the key rock type in a candidate storage formation for hydrostatic pressure conditions. Your team tells you that the rock has the pore pressure properties as shown in the Pressure vs Depth plot on the right.

(a) At a depth of 2000m, describe or draw how the Mohr–Coulomb plot above would change. (b) At a depth of 3500m, describe or draw how the Mohr–Coulomb plot above would change.

(c) What possible scenarios may create the overpressure seen at the lower depths?

Problem #4 (Fluid properties, fluid-rock interactions) 15pts

A formation has similar pressures, temperatures and brine properties as the Sleipner-Utsira formation/CO2 storage pilot. Assume a completely hydrophilic caprock (e.g. completely water - wetting) of average pore size r = 100 nm. What is the maximum CO2 column height beyond which CO2 will enter the caprock through capillary forces?

Now perform the same calculations for an average pore size of average pore size r = 1 micron. Comment on their differences.

Problem #5 (Fluid-rock interactions) 10 pts

The below figure shows the water saturation with depth (or height above  100% water saturation line or “Free Water Line”) for several geologic layers. You can assume that the other fluid in the pore space is carbon dioxide. Assume normal hydrostatic conditions (no overpressure).

(a) Which layer is at residual water saturation? What does this mean for the flow of water and CO2 in this layer?

(b) Rank the layers from likely highest to lowest permeability based on the character of their saturation curves. Which layers might you recommend as caprocks?

Problem #6 (Geochemical interactions) 25 pts

The rate r of calcite dissolution in acid, aqueous solutions in moles/m2/s can be estimated via

where k =

in which k is the rate constant (a function of T & pH), ar is the reactive surface area of calcite in the rock,Q is the activity product for ions in the solution (in this case Q = 0.25*[Ca2+]*[H2CO3] at low pH), KS  is the equilibrium constant (use 10-5  in seawater at pH 3.5), n and m in the first expression are 1, kH  is a pre-exponential constant, EH  is the activation energy, R is the gas constant, T is the temperature of interest in Kelvin, T0  is the standard state temperature in Kelvin (25°C, 298.15 K), aH  is the activity of hydrogen ions in solution (which we will take to be equal  to [H+]) and nH  is an empirical constant.

For your reference, for calcite dissolving in acid water: kH  ≈ 10-0.3  moles/m2/s, EH  ≈ 14,400 J/mole, and nH  ≈ 1.

(a) What is the rate of calcite dissolution in water containing 500 ppmw Ca2+  and 150 ppmw H2CO3, at 50°C with a pH of 3.5, in moles/m2/s?

(b) When Q = KS, what is the rate of calcite dissolution? If Q > KS, what should happen?

(c) If the calcite dissolution rate were 2x10-4  mol/m2/s and the calcite in the rock matrix has a specific surface area of 15/mm and a density of 2710 kg/m3, what is the rate of calcite dissolution in moles/gram/s?

Hint: do not overthink this problem and let the formulas and units be your guide!





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图