代做ECON6012/ECON2125: Semester Two, 2024 Tutorial 4 Questions代写Processing

ECON6012/ECON2125: Semester Two, 2024

Tutorial 4

Tutorial Assignment 2

This assignment involves submitting answers for each of the tutorial ques- tions, but not for the additional practice questions, that are contained on the tutorial 4 questions sheet  (this document).  You should submit your answers on the Turnitin submissions link for Tutorial Assignment 2 that is available on the Wattle site for this course (under the “In-Semester Assess- ment Items” block) by no later than 08:00:00 am on Monday  19 August 2024.  If you have trouble accessing the Wattle site for this course or the Turnitin submission link, please submit your assignment to the course email address (which is ECON6012@anu. edu. au if you area postgraduate student, and ECON2125@anu . edu . au if you are an undergraduate student).  One of the tutorial questions will be selected for grading and your mark for this tu- torial assignment will be based on the quality and accuracy of your answer to that question.  The identity of the question that is selected for grading will not be revealed to students until some point in time after the due date and time for submission of this assignment.

A Note on Sources

These questions and answers do not originate with me.  They have either been influenced by, or directly drawn from, other sources.

Key Concepts

Vector Spaces, Linear Combinations, Linear Independence, Linear Depen- dence, Spanning Set, Basis for a Vector Space, Dimension of a Vector Space.

Row-Space of a Matrix, Column-Space of a Matrix, Rank of a Matrix, Or- thogonality, Convex Combination, Convex Sets, Strictly Convex Sets.

Tutorial Questions

Tutorial Question 1

Find the rank of the following matrix.  Be sure to justify your answer and show all associated working.

Tutorial Question 2

Find the rank of the following matrix.  Be sure to justify your answer and show all associated working.

Tutorial Question 3

Find the rank of the following matrix.  Be sure to justify your answer and show all associated working.

Tutorial Question 4

Consider  a  consumer with preferences  defined over the  consumption set R2+ = {(x1, x2) : x1 ∈ [0, ∞), x2 ∈ [0, ∞)}. has preferences defined over the set of all bundles (combinations) of non- negative quantities of each of two commodities. Suppose that these prefer- ences can be represented by a utility function U : R −→ R of the form

Perfect Substitutes:  U(x1 , x2 ) = x1 + x2 .

Complete the following exercises.

1.  Find  the  equation  that  defines  a  representative  indiference  curve (that is, iso-utility curve) for this consumer, and illustrate that curve. Justify your answer.

2.  In a new diagram, illustrate a representative weak preference set (that is, weak upper contour set for the utility function) for this consumer. Justify your answer.

3.  The consumer’s preferences are said to convex if every weak prefer- ence set (that is, weak upper contour set for the utility function) is a convex set.  Are the consumer’s preferences convex?  Justify your answer.

4.  The consumer’s preferences are said to convex if every weak prefer- ence set (that is, weak upper contour set for the utility function) is a strictly convex set.  Are the consumer’s preferences strictly convex? Justify your answer.

Tutorial Question 5

Consider  a  consumer with preferences  defined over the  consumption set R2+ = {(x1, x2) : x1 ∈ [0, ∞), x2 ∈ [0, ∞)} has preferences defined over the set of all bundles (combinations) of non- negative quantities of each of two commodities. Suppose that these prefer-ences can be represented by a utility function U : R −→ R of the form

Leontief (Perfect Complements):  U(x1 , x2 ) =   min(x1 , x2 ) .

Complete the following exercises.

1.  Find  the  equation  that  defines  a  representative  indiference  curve (that is, iso-utility curve) for this consumer, and illustrate that curve. Justify your answer.

2.  In a new diagram, illustrate a representative weak preference set (that is, weak upper contour set for the utility function) for this consumer. Justify your answer.

3.  The consumer’s preferences are said to convex if every weak prefer- ence set (that is, weak upper contour set for the utility function) is a convex set.  Are the consumer’s preferences convex?  Justify your answer.

4.  The consumer’s preferences are said to convex if every weak prefer- ence set (that is, weak upper contour set for the utility function) is a strictly convex set.  Are the consumer’s preferences strictly convex? Justify your answer.

Tutorial Question 6

Consider  a  consumer with preferences  defined over the  consumption set R2+ = {(x1, x2) : x1 ∈ [0, ∞), x2 ∈ [0, ∞)} has preferences defined over the set of all bundles (combinations) of non- negative quantities of each of two commodities. Suppose that these prefer- ences can be represented by a utility function U : R -→ R of the form.

Scarf-Shapley-Shubik Special Case:

U(x1 , x2 ) =   max(min(x1, 2x2 ) , min(2x1 , x2 )) .

Complete the following exercises.

1.  Find  the  equation  that  defines  a  representative  indiference  curve (that is, iso-utility curve) for this consumer, and illustrate that curve. Justify your answer.

2.  In a new diagram, illustrate a representative weak preference set (that is, weak upper contour set for the utility function) for this consumer. Justify your answer.

3.  The consumer’s preferences are said to convex if every weak prefer- ence set (that is, weak upper contour set for the utility function) is a convex set.  Are the consumer’s preferences convex?  Justify your answer.

4.  The consumer’s preferences are said to convex if every weak prefer- ence set (that is, weak upper contour set for the utility function) is a strictly convex set.  Are the consumer’s preferences strictly convex? Justify your answer.

Additional Practice Questions

Additional Practice Question 1

Let V bean inner product space.  Show that if u ∈ V is orthogonal to every v ∈ V (that is, if〈u, v〉= 0 for all v ∈ V), then u must be the null (zero) vector in V.

Additional Practice Question 2

Let V bean inner product space.  Show that if a vector u ∈ V is orthogonal to a vector v ∈ V (that is, if hu, v〉= 0), then every scalar multiple of the vector u is also orthogonal to the vector v.

Additional Practice Question 3

Let V be Euclidean three-space and consider the vectors v1  = (1, 1, 2)T  and v2  = (0, 1, 3)T . Find a vector w ∈ R3  that is orthogonal to both v1  and v2 .

Additional Practice Question 4

Do the vectors v1  = (1, 2, 3)T , v2  = (4, 5, 12)T , and v3  = (0, 8, 0)T  span R3 ? Justify your answer.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图