代做EMATM0050 Data Science Mini Project代做留学生SQL语言

University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050), January 2025.

Problem B: Leading-edge data analytics for Level-2 financial-market data

Problem owner: DrAsh Booth, Global Lead in Applied AI/ML, JP Morgan, London.

The global financial markets are obvious sources of "big data". If we look at the market for only one tradeable asset, such as shares in Amazon.com, there are so many people buying and selling the asset that the share price can potentially move up or down (although typically each move is only by a small amount) several times per second for all the time that  the market is open, and hence in one trading-day there could be 20,000 or more time-points for movements in the price of an asset. This would be quite a lot to process if the data of interest at each time-point was only a single value, only the share-price in dollars and cents, but very often we are interested in much more data than just the share-price for an asset. Traders in financial markets commonly work with data that summarises all bids (orders to buy) and asks (orders to sell) currently resting at the exchange: any trader looking to buy can post a "bid limit order" at the exchange, saying what price they are prepared to pay per share, and how many shares they wish to buy; similarly any seller can post an "ask limit order" showing how many shares they want to sell, and the per-share price they are seeking. Different buyers will have different price and quantity needs, as will different sellers, and so at anyone time the stock-exchange summarises all of the currently-received orders by publishing its "Limit Order Book" (LOB), sometimes also called the ladder, which shows the total quantity of units of the asset available to buy or to sell at each price which has been quoted. The LOB at anyone time will typically involve tens of different (price, quantity) pairs - and the LOB may change several times before any transaction takes place that results in achange in the share-price, so there might plausibly be 100,000 data-points in a one-daytime-series for the LOB for a highly-traded asset such as Amazon stock, and each of those data-points would be a snapshot of the LOB as it is updated, so each of the 100,000 data-points will itself be a structure involving perhaps 50 numeric values or more, so in approximate figures we can plausibly expect data-files of 5million values from anyone such stock, in anyone day. Industry practitioners refer to this whole-LOB data as "Level2 data". There are good reasons to believe that executing appropriately advanced data-analytics on Level2 time-series data could identify opportunities for usefully predicting near- term movements in price, and hence for profitable automated trading from those signals.

The problem, put simply, is for you to implement and evaluate data-analytics techniques that could be useful in identifying trading signals ("buy" or "sell") in Level2 data. You will be issued with Level2 data-sets for this project, although the identity of the asset will have been deleted. Some data will be made available as soon as the project commences, for you to start work on, and then additional data maybe released at later stages in the project: that data may not be for the same asset, or the same market-period, as the initial data-set, and so it is likely not to be statistically identical to the initial data-set, so you should plan accordingly.

My team has an ongoing research interest in exploring how well various reinforcement learning approaches perform. at finding good trading strategies when working with Level2 time-series data. For example, we have an interest in the A3C approach, although we recognise that there is probably not enough time in your mini-project to research, design, implement, and evaluate a full A3C system. Nevertheless reinforcement learning is a long-established field with a very large academic literature, and there maybe simpler methods, or freely-available source code-libraries, that you can use to make good progress in the time available. You might want to start by implementing an elementary time-series analysis approach such as ARIMA1,which is relatively simple and very well known, and which could serve as a useful baseline for comparing against, but our interests lie beyond such a commonly-used approach; and so should yours.

Remember that we do not just want to see a system that does time-series predictions, we want to see what profit your system might generate from actually trading on the basis of its signals: you'll need to reserve some of the Level2 data as a test-set, and to write (or find) a simple trading simulatorsowe can see how well an automated trading system would do when using the signals that your analysis identifies.

One final thing: the raw datasets that you will be supplied with may need some initial wrangling (cleaning, extraction, processing etc) before you can use them, and you will probably find that some initial exploratory visualization and data-mining is useful too.

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图