代写ECON6012 / ECON2125: Semester Two, 2024 Tutorial 3 Questions代做留学生SQL语言程序

ECON6012 / ECON2125: Semester Two,

2024

Tutorial 3 Questions

A Note on Sources

These questions and answers do not originate with me.  They have either been in丑uenced by, or directly drawn from, other sources.

Key Concepts

Compact Sets, The Heine-Borel Property, The Heine-Borel Theorem.

Tutorial Questions

Tutorial Question 1

Use the Heine-Borel Theorem to show that

S2  ={(x, y) R2  : d((x, y), (0, 0)) = 1}

is compact in R2 .

Tutorial Question 2

Use the Heine-Borel Theorem to show that [—1, 1] × [—1, 1] is compact in R2 . (You may use the fact that the functions fi  : R2  —→ R defined by f1 (x, y) = x and f2 (x, y) = y are both continuous.)

Tutorial Question 3

Consider a consumer whose preferences are defined over the consump- tion set X  = R2+.  This consumption set consists of bundles of non- negative quantities of each of two commodities. Denote atypical con- sumption bundle by (x1 , x2), where x1  is the quantity of commodity one in the consumption bundle and x2  is the quantity of commodity two in the consumption bundle. Suppose that this consumer faces a budget constraint of the form. p1 x1  + p2 x2 ≤ y, where p1 > 0 is the linear price per unit for commodity one, p2 > 0 is the linear price per unit for commodity two, and y >  0 is the consumer’s income. The consumer also faces non-negativity constraints on his or her con- sumption of each commodity. This means that x1 > 0 and x2 > 0.

1. What is the consumer’s constraint set?

2. Is the consumer’s constraint set a subset of his or her consump- tion set?

3. Is the consumer’s constraint set a proper subset of his or her consumption set?

4. Is the consumer’s constraint set non-empty?

5. Is the consumer’s constraint set a compact set?  Justify your answer.

Additional Practice Questions

Additional Practice Question 1

Use the Heine-Borel Theorem to show that

S3  ={(x,y, z) R3  : d((x,y, z), (0, 0, 0)) = 1}

is compact in R3 .

Additional Practice Question 2

Use the Heine-Borel Theorem to show that [—1, 1]n  is compact in Rn. (You may use the fact that the functions fi  : Rn  —→  R defined by f1 (x, y) = xi  for each i ∈ {1, 2, · · · , n} are all continuous.)


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图