代做GEOL 106 – Winter 2025 ASSIGNMENT 1 – Climate Proxies and Climate Change代做回归

GEOL 106 – Winter 2025

ASSIGNMENT 1 – Climate Proxies and Climate Change

Due Date: January 31* (11:59 PM, Kingston time)

Mark:  /23

A few things before starting.

•    I provide an answer sheet (in Word format) where you can write your answers.  Please use this sheet, it makes it easier for the TAs to be consistent in their marking. You need to save as a PDF to submit.

note that you will be only able to upload the answer sheet as a PDF in OnQ

•    information I give you to read through prior to the questions can be useful.

*this is the due date without the 3-day grace period

PART 1 – Climate Proxies

Climate change is not a new phenomenon; it has been occurring throughout Earth history. Part 1 of the assignment examines palaeoclimate data from Earth history and the present.  Through use of archives and proxies, Earth scientists can travel back in time and discover what the climate was like in the Earth’s past. By understanding climate change in the past, scientists gain insight into how current conditions fit or diverge from previous behaviour, and how the future climate might look. We discussed climate archives and proxies in class and how they can be used to learn about past climate. This assignment focuses on proxy data (from ice and salt cores) which can be used to reconstruct palaeoclimates.

Ice Core Data

By looking at past concentrations of greenhouse gases (such as CO2 and methane) in air bubbles found in ice cores, scientists can calculate how modern amounts of these gases compare to those of the past and can compare past concentrations of greenhouse gasses to temperature at that time. Ice cores have been collected since the 1950s from locations throughout the world, but the majority come from the ice sheets of Greenland and Antarctica. The ice core data you will be using was collected from Lake Vostok (see above right image). Conditions of glacial ice formation here provide excellent time resolution, and air bubbles in the ice core preserve actual samples of the Earth’s palaeo-atmosphere.

Similar to tree rings, ice cores preserve annual layers which are the result in seasonal differences in snow properties. These annual layers, as well as dust trapped in the ice allow scientists can determine how old a layer of ice is.

19 cm long section of ice core from Antarctica. This section contains 11 annual layers with summer layers (arrowed) sandwiched between darker winter layers. (from the US National Oceanic and Atmospheric Administration)

Through analysis of ice cores, scientists learn about glacial-interglacial cycles, changing atmospheric CO2levels, and climate stability over the last tens of thousands of years.  The ice contains air bubbles, and scientists use the isotopic composition oxygen to determine the global average temperature at the time the snow fell. In addition, bubbles of air became trapped in each layer of ice as the snow turned into glacial ice. With temperature and CO2 concentration data, scientists can analyze whether variations in CO2  concentrations in the atmosphere correlates with changes in average global temperatures.

Examining Ice Core Data

You will use ice core data from the East Antarctic Ice Sheet. The ice core is from a drilling operation that drilled to a depth of 3.2 km at the Vostok research station. At this depth in the ice sheet, the drill has reached layers of ice about 420,000 years old. Use the information given as well as the graphs to answer the following questions.

Examine the following graph.

1. This is a smaller version of a graph available in the Graphs file. Let’s look at the X-axis first.  Which point is younger? Point A or Point B? (1 mark)

2. What variable does the Y-axis show? (1 mark)? Does 0°C correspond to the freezing point of water? (1 mark)

3. What are the temperatures compared to the modern average at Point A and Point B? (2 marks) (include units)

4. Now, look at graph (the blue line). Briefly describe trends as you move from ~ 250,000 to 150,000 years ago (1 mark).

In the past, did the Earth warm up faster than it cooled down? (1 mark).

The graph below (and in the Graphs file) shows atmospheric CO2 concentrations over the last 420,000 years, extracted from the Vostok ice core. The CO2 concentrations are given in parts per million (ppm). Think of a CO2  value of 230 ppm on the graph as a baseline. The amount of CO2  in the atmosphere was low when its concentration was less than 230 ppm, and becoming higher when its concentration was above 230 ppm.

Data from Petit, J.R. et al. (1999), Nature, 399, 429-436

5.    What was the ~ atmospheric CO2 concentration 350,000 years ago? (1 mark) I will accept a limited range of values.

6.    Do times of low atmospheric CO2 on the carbon dioxide graph correspond to the times of cooler temperatures seen on the age vs temperature graph?  (1 mark)

Salt Core Data

In arid climates, layers of halite (salt) in sedimentary rocks form when salty water evaporates and the salt collects at the bottom of the lake or seabed. Halite (NaCl), which is known as table salt, is a common evaporite mineral. During the formation of halite crystals, microscopic bubbles of fluid are trapped within the crystal. These bubbles are known as fluid inclusions and can be seen in the images below. At times, an air bubble may also be present. Analyzing both the liquid and vapour portions of the fluid inclusions gives information on palaeo-temperatures and atmospheric composition. An interesting note – these fluid inclusions have also been found to contain micro-organisms.

Example of a ‘salt core’. The pinkish/reddish/brownish material are evaporites. This core is 830 million years old.

Examples of fluid inclusions (L) containing air bubbles (V). The air bubbles contain ‘snapshots’ of atmospheric composition at the time of formation.

The graph (right) depicts palaeoclimate data for the past 150,000 years from 4 locations (including Vostok). Answer the following questions about the data from the 4 cores.


7.     From 90,000 years ago to the present, is there similarity among the temperature curves from the different locations? (1 mark)

8. If so, which cores generally matchup? (1 mark)

9.    Which one(s) seem to reflect a different palaeoclimate history than the others? (1 mark)

10.   Based upon these observations, which cores might reflect global climate trends more than local climate trends? (1 mark)

Recently, a Canadian scientist was in the news due to their involvement in an ice drilling project at Little Dome C / Concordia Station in Antarctica. Drilling at this location is part  of the Beyond EPICA project .



Read the articles (available in OnQ) and answer the following questions.

11.    How long was the ice core? (1 mark)

12.   How far back in geological time does the ice core reach? (1 mark)

13.   What episode in Earth history do the scientists involved in the project want to study and why? (2 marks)

PART 2 - Present-Day Climate Change

We are living in the Holocene epoch, which began close to 11,700 years ago. The average amount of CO2  in the atmosphere during the Holocene epoch was 280 ppm up until about 1780 AD. The more recent concentrations of CO2  in the atmosphere are not depicted in the Vostok ice core data, which stops around 250 years before present (BP).

14.   Using the Keeling Curve (linkin OnQ), report the current atmospheric CO2 concentration and the date. (1 mark)

15.   What is your CO2 birth number? Using the interactive plot at NOAA’s Global Monitoring Laboratory (linkin OnQ), determine the following.

a.    What is your CO2 birth number (just use month and year)? (1 mark)

b.    If your instructor was born (not saying I was) in October 1980, what is their CO2 birth number? (1 mark)

c.     How much have CO2 concentrations changed (in ppm) from October 1980 to October 1990? (1 mark)

d.    How much have CO2 concentrations changed (in ppm) from your birthday (month and year) to 10 years later? For example, if you were born in January 2004 compare this value to January 2014. (1 mark)

e.    Do the answers in c andd indicate an increasing rate at which CO2 is accumulating in the atmosphere? (1 mark)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图