代做STATS 763 - 2022 - Final examination代做Prolog

STATS 763 - 2022 - Final examination

Available from 15 June 2022 at 17:00 NZST (5:00PM)

Due by 15 June 2022 at 19:30 NZST (7:30PM)

General instructions

•  This examination consists of these instructions and 3 questions on 8 pages. Attempt all questions.  The exam will be marked out of 100, out of a possibility of 100.

•  Inspera requires you to upload a single file containing your answers to all three questions. The file size cannot exceed 1 Gb.

•  The duration of the examination is two hours, between 17:00 (5:00PM) and 19:00 (7:00PM) on 15 June 2022, New Zealand Standard Time.

•  This assessment was designed to be completed within 2 hours by a pre- pared student.  However, you have 2 hours and 30 minutes in which to complete and submit it.

•  Submissions will be open until 19:30 NZST (7:30PM) to allow for scan- ning and uploading.  It is your responsibility to ensure your assessment is successfully submitted on time.

•  All reasonable forms of answer file format will be accepted,  including clearly scanned or photographed hand-written responses, PDF documents, Word or similar Libre Office documents, markdown files, etc.

•  This is an on-line open-book exam.  You are allowed any resource to answer the questions except consulting another person (see Academic Honesty Declaration). Piazza will be unavailable during the examination except to address private queries to the instructors.

•  Computing final numerical answers is not required. It is su代cient, for full marks, to produce a correct computable solution.

Question 1: [Total:  30 marks]

Data were collected from 696 randomly sampled women who gave birth over a 4 1/2 month period in a New Zealand hospital in 2011. The following table describes the data.

The outcome of interest is the diference between the date of birth and the expected date of delivery (‘DOB  -  EDD ‘), measured in weeks.  A moderate positive diference (late birth) is generally not an issue; a negative diference (early birth) larger in magnitude than 3 weeks identifies the baby as premature.

The exposure of interest is the Number of previous pregnancies without live birth (‘n  stillbirths‘) defined as Gravidity-Parity-1. (The “-1” dis- counts the current pregnancy).  This number includes stillbirths and voluntary interruptions of pregnancy.

Adjustments for ethnicity (binary variables eth EurOther,eth Maori,eth Pasifika and eth Asian), age group (AgeGrp), and presence of a husband or partner

(HusbPart) are considered sufficient to account for confounding in this obser- vational study.

a) [6 marks]  We fit two linear least-squares models, A and B.

Using the partial output supplied below, test the null hypothesis H0  : βGravidity  = -βParity  vs H1  : not H0 .

Justify your answer briely.

Model A:

Coefficients:

Estimate  Std .  Error  t  value  Pr(>| t | )

(Intercept)       0 .05010        0 .38813      0 .129    0 .89734

Gravidity         -0 .30532        0 .09951    -3 .068    0 .00224  **

Parity                 0 .30649        0 .12137      2 .525    0 .01178  *

[snip  -  you  don’t  need  the missing  output  to  answer  the  question]

(Dispersion  parameter  for  gaussian  family  taken  to  be  5 .159174)

Null  deviance:  3639 .1  on  695    degrees  of  freedom

Residual  deviance:  3523.7161  on  683    degrees  of  freedom

Model B:

Coefficients:

Estimate  Std .  Error  t  value  Pr(>| t | )

(Intercept)         -0 .25347        0 .35700    -0 .710    0 .47796

‘n  stillbirths‘  -0 .30509        0 .09877    -3 .089   0 .00209  **

[snip]

(Dispersion  parameter  for  gaussian  family  taken  to  be  5 .151635)

Null  deviance:  3639 .1    on  695    degrees  of  freedom

Residual  deviance:  3523.7181    on  684    degrees  of  freedom

b) [6 marks]  According to the fitted model below, how large would the num- ber of previous pregnancies with no live birth (the ‘n  stillbirths‘ co- variate) need to be for ‘DOB  -  EDD‘ to be more negative than -3 weeks on average, if the expectant mother is Asian with no other ethnicity, has no husband/partner and is over 40?  It is su代cient to set up the equation without solving it.

Model B (again)

Coefficients:

Estimate  Std .  Error  t  value  Pr(>| t | )

(Intercept)         -0 .25347        0 .35700    -0 .710    0 .47796

‘n  stillbirths‘  -0 .30509        0 .09877    -3 .089   0 .00209  **

eth_Maori             -0 .11255        0 .28660    -0 .393    0 .69465

eth_Pasifika       -0 .32473        0 .31575    -1 .028    0 .30411

eth_Asian             -0 .60485        0 .36708    -1 .648    0 .09987  .

eth_EurOther          0 .15025        0 .30503      0 .493    0 .62248

AgeGrp<20 -0 .17129 0 .32625 -0 .525 0 .59974

AgeGrp20  -  24        0 .07679        0 .25737      0 .298    0 .76552

AgeGrp30  -  34      -0 .05538        0 .25319    -0 .219    0 .82692

AgeGrp35  -  39      -0 .08779        0 .28121    -0 .312    0 .75499

AgeGrp40+              -0 .98586        0 .61525    -1 .602    0 .10953

HusbPartNo            -0 .24467        0 .22864    -1 .070    0 .28495

(Dispersion  parameter  for  gaussian  family  taken  to  be  5 .151635)

Null  deviance:  3639 .1    on  695    degrees  of  freedom

Residual  deviance:  3523.7    on  684    degrees  of  freedom

c) [6 marks] Explain in words and with simple notation how you could produce a Wald confidence interval for your answer in b) using a reliable method to estimate standard errors.

d) [6 marks]  We consider a model including the interaction terms between ‘n  stillbirths‘ and all ethnicity variables. A partial summary is shown below:

Model C

Coefficients:

Estimate  Std .  Error  t  value  Pr(>| t | )

(Intercept)                                -0 .35170        0 .40251    -0 .874       0 .383

‘n  stillbirths‘                           -0 .03248        0 .38871    -0 .084        0 .933

eth_Maori                                      -0 .20279       0 .33713    -0 .602        0 .548

eth_Pasifika                               -0 .09238        0 .36578    -0 .253       0 .801

eth_Asian                                      -0 .61988       0 .42384    -1 .463        0 .144

eth_EurOther                                   0 .31564        0 .36039      0 .876        0 .381

[snip]

‘n  stillbirths‘:eth_Maori          0 .14032       0 .34115     0 .411       0 .681

‘n  stillbirths‘:eth_Pasifika  -0 .46421        0 .39582   -1 .173       0 .241

‘n  stillbirths‘:eth_Asian          0 .09691       0 .48039     0 .202       0 .840

‘n  stillbirths‘:eth_EurOther  -0 .34506        0 .33578   -1 .028       0 .304 (Dispersion  parameter  for  gaussian  family  taken  to  be  5 .12995)

Null  deviance:  3639 .1    on  695    degrees  of  freedom

Residual  deviance:  3488 .4    on  680    degrees  of  freedom

Test the significance of the interaction term by producing an appropriate test statistic and p-value; make sure to specify the approximate distribu- tion of the test statistic under the null hypothesis of no interaction.

e) [6 marks]  The distribution of premature births by maternal age group is shown below:

Counts of premature births by age group, original data

Premature   <20 20 - 24 25 - 29 30 - 34 35 - 39 40+

FALSE    72      148       146       148       103      12

TRUE     8        14         16         16         10        3

We create a subsampled data set consisting of all premature births and a sample of twice that number of non-premature births, stratified by age. The distribution of prematurity and age group in the subsampled data is given below.

Counts of premature births by age group, subsampled data

Premature   <20 20 - 24 25 - 29 30 - 34 35 - 39 40+

FALSE    16       28         32         32         20        6

TRUE     8        14         16         16         10        3

Explain how to fit a relative risk model of prematurity to the subsampled data that will estimate the efect of ‘n  stillbirths‘ on Premature unbiasedly (still assuming that confounding is correctly addressed) and will produce reliable standard errors.

Question 2: [Total:  30 marks]

A model for Covid risk in arrivals at the border is given by

logitP [Yit = 1jbi] = αi + bi + β1Xi;t + β2Xi;t-1

where Yit  is the probability of testing positive within a week of arrival for an individual from country i during week t of the epidemic, Xi;t   is the incidence of diagnosed Covid cases per 100,000 people in country i  during week t, and Xi;t-1  is the incidence of diagnosed Covid cases per 100,000 people in country i during week t - 1. The model for the random efects bi is

bi ~ N(0, τ2 ).

a) [5 marks]   This model could be fitted with separate fixed efects √i  in- stead of the random efects b i . Explain the term ”shrinkage” and how it connects the values of bi i .

b) [10 marks]  Other predictor variables (incidence rates, test positivity rates, death rates, testing rates) are available. Describe away to choose a model that predicts accurately, using weekly data from each country.

c) [5 marks]  The values ofβ(^)1   and β(^)2  are approximately 1 and -0.5 respec-

tively. A non-statistician asks if the negative value of β(^)2  means that higher incidence leads to lower risk. How would you answer?

d) [10 marks]  If the predictors were transformed to Xi;t  and Xi;t  - Xi;t-1 , what would be the coe代cients of these two variables?  What would the interpretation of these coe代cients be?

Question 3: [Total:  40 marks]

Data collected in STATS 201 show that students who regularly attend lec- tures obtain higher average grades than those who do not regularly attend lectures.  One possible explanation is that lectures are useful; another is that lecture attendance is not actually useful, but is an efect of student interest in statistics, and that interest in statistics afects grades.

Using variables ATTEND for regular attendance, GRADE for grades, and INTEREST for interest in statistics, answer the following questions.

a) [5 marks]  Draw causal graphs that represent the two competing explana- tions for the correlation between attendance and grades.

b) [5 marks]  Write down a regression model where the coe代cient of ATTEND estimates the efect of lecture attendance on grades.

c) [10 marks]  Any realistic measurement of the variable INTEREST will not be a perfect representation of the true underlying variable.  Modify your causal graphs to show both the true underlying variable INTEREST and the measurement INTEREST*. Explain how this will afect the interpretation of your model in part b).

d) [10 marks]  Suppose a lecturer increases attendance by ofering an unre- lated incentive, such as handing out chocolate.  Under the two competing explanations, extend your causal graphs from part A to include a vari- able INCENTIVE, say whether the incentive would be expected to increase average grades, and explain why.

e) [10 marks]  Give conditions under which the incentive is an instrumental variable and describe how it allows you to estimate the efect of ATTEND on GRADE.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图