代做ELE000172M Research Methods Theory & Data Analysis 2024-5代写Python语言

ELE000172M

BEng/MEng Degree Examinations 2024-5

Department:

School of Physics, Engineering and Technology

Title of Exam:

Research Methods Theory & Data Analysis

Question: [40 marks]

Write a consultancy report for GreenBuild Materials investigating factors influencing employee productivity. Your report should include the following sections:

A. Introduction (200 to 250 Words):                                                    [6 marks]

This section should explain the report's purpose and value to the Executive Board.

•    It should clearly outline your specific hypotheses relevant to the research question.                      [3 marks]

•    You  need  to  identify  relevant  variables  from  your  hypotheses  and provide reasons for your chosen research direction.                  [3 marks]

B. Methodology (200 to 250 Words): [11 marks]

•   You  need  to  explain  the  methods  /  tests  you  used  to  conduct  the research process - including data cleaning procedures.             [5 marks]

•    You need to provide reasons for each of your choices.             [6 marks]

C. Results (250 words): [10 marks]

•    Present  the findings  using  charts  or tables created  in SPSS,  Excel, Python, or another statistical software.           [5 marks]

•     Use diagrams, graphs, or charts to present the data clearly and visually illustrate productivity scores across shifts, noise levels, and other variables. You should provide a complete picture of the empirical analysis and not pick-and-choose findings based on their significance. [5 marks]

D. Discussion and Reflection (100 words to 150 words):                 [10 marks]

•    Interpret the statistical findings to address the research questions, highlighting factors that significantly affect productivity.

E. Conclusion (50 words to 100 words): [3 marks]

•    Provide actionable recommendations for GreenBuild to improve scheduling, work environments, or employee engagement based on the findings.

Supplementary Evidence Requirement

You must include supplementary evidence, such as graphical data or tables generated in SPSS or another statistical software, to enhance clarity and support  your findings. Evidence may include histograms, bar charts, box plots, correlation matrices, or ANOVA output tables.

Note: The instructions are outlined as follows:

Case: GreenBuild Materials - Manufacturing Efficiency

Consultancy Report for GreenBuild Materials: Investigating the Effect of Workplace Factors on Employee Productivity

GreenBuild  Materials  is  a  leading  company  in  sustainable construction,  operating multiple manufacturing facilities across the region. Recently, the Board of Directors has  raised  concerns  about  variable  productivity  levels  among  employees  across different shifts and environmental conditions. They believe that factors such as shift type, noise exposure, workplace temperature, employee satisfaction, and salary may significantly impact productivity, affecting overall efficiency.

To gain a clearer understanding of these factors, GreenBuild conducted a survey among their  manufacturing  workforce.  The  data  collected  will  help  the  company identify the most influential factors on productivity, enabling the Board to implement targeted changes to optimize  employee  performance  and satisfaction.  Some  key questions they are interested in exploring include:

•     How do different shift types (morning, afternoon, night) impact productivity?

•     Is   there   a   relationship   between   noise   level   exposure   and   employee productivity?

•     Does workplace temperature affect productivity levels?

•    What is the correlation between employee satisfaction and productivity?

•     How does annual salary relate to productivity scores?

You may be able to think of other important questions the company should be asking that can be answered by this data set. Marks will be awarded for deeper insights and additional exploration of the dataset.

Dataset overview:

The dataset comprises responses from 120 employees across GreenBuild’s facilities, with data collected on the following key variables:

Employee ID: Unique identifier for each participant.

Age: Age of the employee.

Gender: Gender of the employee.

Shift Type: Type of shift (Morning, Afternoon, Night) worked by the employee.

Noise Level Exposure: Noise exposure level in the workplace (Low, Medium, High).

Workplace Temperature (°C): Average temperature in the employee’s work area.

Employee  Satisfaction:   Satisfaction  level  on  a  scale  of   1  to  5,  with 5 indicating highly/Very satisfied.”

Productivity Score: Productivity score based on performance evaluations on a scale of 1 to 10, where 10 is the highest productivity score.

Years at Company: Duration of employment at GreenBuild.

Training Hours Last Year: Training hours completed in the past year.

Workload Intensity: Perceived job intensity (Low, Moderate, High).

Annual Salary (£): Annual salary of the employee in British pounds (£).

Instructions for Candidates:

Your task is firstly to explore which variables relating to salary are the most important,  then  statistically  analyse  the dataset gathered by  the Board of Directors  and  use the findings from your  analysis to write a  report for the Executive Board.  Your statistical analysis should follow these steps:

Instruction:

Step 1: Formulate Appropriate Hypotheses:

•   To answer the research question, you will need to select relevant hypotheses

- there is a strong recommendation to propose three hypotheses in total.

This step will be important in shaping your statistical analysis and guiding the investigative journey.

Step 2: Identify relevant variables from your hypotheses:

•   You  need  to   identify  what   the  relevant  variables  are  for  your  selected hypotheses. These variables will play a crucial role in shaping the study's focus and analytical framework.

Step 3: Complete Data Cleaning:

•    Before the analysis phase, rigorous data cleaning procedures are essential to ensure the dataset is accurate, reliable, and ready for scrutiny. This preparatory step should fix any dataset discrepancies or anomalies that might affect the validity of the findings.

Step 4: Identifying and applying statistical tests for analysis:

•   The core of the research process involves systematically conducting statistical tests and analysis to assess the validity of the formulated hypotheses. This step is central to uncovering empirical evidence and gaining a better understanding of the research question.

Step 5: Interpret the results:

•   The insights derived from the analysis, whether significant or not, will require effective interpretation. Use diagrams, graphs, or charts to clarify / visualise the findings.

Step 6: Write your Report.

•   The report must be between 800 to 1000 words. This word count ensures a concise  yet  thorough  presentation  of  the  research  process,  findings,  and implications.

Note: Graphical evidence such as graphs and tables are excluded from the word count.

Additional information:

●   No references are required.

●   You must add supplementary evidence such as graphical data from SPSS or any statistical tools you used for this data analysis.

●   Cover  page, contents list, figures, appendices, and references are excluded from the total word count.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图