代写ECE5550: Applied Kalman Filtering KALMAN FILTER APPLICATIONS代做Python编程

ECE5550: Applied Kalman Filtering

KALMAN FILTER APPLICATIONS

10.1: Examples of Kalman filters

To wrap up the course, we look at several of the applications introduced in notes chapter 1, but in more detail.

My students and I have been directly involved with these examples.

Tracking marker dots on actors

State: x , y position and velocity of dots in frame.

Observation: x , y positions of dots in frame. (unlabeled).

Issues: Data association, tracking when dots are obscured.

Images containing actors with relective marker dots arrive for processing at 30 frames per second.

Dennis’ first challenge was detecting targets in a 2D camera field in an efficient way.

The standard NTSC scan order for when pixels arrive is shown to the right.

Dennis created an efficient centroid

calculation algorithm that worked in real time as the pixels arrived (in scan order), and can handle up to a pre-specified maximum number of simultaneous targets.

The following is an example illustrating some of the issues

After scanning row 5, there are three centroid candidates; after scanning row 6, two are joined, to leave only two candidates.

The next issue was the target dynamic model to use. Dennis tried both NCV and NCA models;

Sensor noise was determined to be on the order of 1/2 pixel;

Σ was selected by evaluating the statistics of accelerations and jerks in a database of typical motion capture scenarios.

The next issue was how to associate centroid position measurements to individual target tracks.

Dennis used a maximum-likelihood association method. That is, for every centroid-target pair, he calculated

where x is the centroid measurement, and x is the target’s present state estimate, and Σx is the target’s present covariance estimate.  He then formed a table of likelihood values

He found the table maximum value, and made that association,

and set all entries in that row and column to zero; he repeated until all measurements were accounted for.

Occluded targets (missing measurements) were handled by skipping measurement updates for those target tracks.

Dennis found that the NCV model worked best for this application, and the results were outstanding.

Ongoing challenges in multi-target tracking:

Efficiency of the data association process in particular, and of multi-target tracking in general.

For example, there are an estimated 80,000,000 objects 1cm

across or larger orbiting earth (large enough to disable a satellite). We presently track about 18,000 of the largest ones. Orbit

estimation, collision prediction are hot topics, but very difficult too. Furthermore, beyond assessing where an object is, being able to  say what it is doing and what that means are two very important questions to answer.

Localizing bad guys (or, search and rescue)

State: x , y position and velocity

Observation: Direction (angle) from UAV to target.

Issues: Nonlinear relationship between measurements and position; measurements arriving to KF out-of-sequence.

Multiple UAVs search a pre-defined

geographic region for targets of interest.

Heterogeneous sensors are used: passive radar, camera, IR.

All sensors measure only angle to target (not x , y position, nor range to target).

For the targets, a modified NCV model was used

Note (1) that the output equation is nonlinear, and (2) that a baseline continuous-time model is used since measurements are not

necessarily aligned with a pre-defined sample rate.

SPKF handles nonlinear output equation, but still needed to be very careful with modulo-2π issues in measurements (a gigantic pain).

The state equation, evaluated over a non-constant time interval, is

Process noise integrated over a non-constant time interval is incorporated as

Initializing the target state using a single measurement of arrival angle was an issue

We assume a uniform. distribution on R  ~ U (0, r0), where r0  is the sensor range.

We model the sensor reading Θ  = Θ  + Θnoise  where Θnoise  is a  Gaussian distribution with zero mean and standard deviation σv known by the sensor.

Then, assuming that R and Θnoise  are independent,

Without loss of generality, we can assume that the sensor reading  Θ    0, and then rotate the final result by the true sensor reading to compensate. For the above assumptions, the final answer is:

Using similar reasoning, the covariance matrix (for these two states) may be found to be:

Furthermore, measurements from cooperating UAVs arrived to the fusion process out-of-sequence due to communication latencies.

Developed “out-of-order SPKF” (O3 SPKF) to handle this issue.

Related ongoing challenges:

Knowing UAV (self) position in GPS deprived scenarios.

Target modeling with constraints (e.g., railroad problem), and robust estimation for same.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图