代做MANG1007 MANAGEMENT ANALYSIS SEMESTER 1 EXAMINATIONS 2019-20帮做Python语言程序

MANG1007W1

SEMESTER 1 EXAMINATIONS 2019-20

MANAGEMENT ANALYSIS

SECTION A

You must answer ALL TEN questions from this section.

A1.

a) What is the value of log28?

b) What is the value of e5 e3?                 [4 marks]

A2. John and Mary together have combined savings of £12,000. If John has £2,000 less than Mary, how much does each one of them have?          [4 marks]

A3.

a)  Can the equation y = 10 - 5x be represented as a line?

b)  Is the value of the slope of this line 10, 5, or -5?                   [4 marks]

A4.

a) If an amount of £100 is put in a bank earning 5% compound interest a year, how much will it have become at the end of 10 years?

b) How many years will it take for the amount to surpass £110?             [4 marks]

A5. Assume you have collected the observations 13, 16, 16, 21, 22, 24, and 30. What is the mean, median, and mode?     [3 marks]

A6.

a) Ten friends are at a bar drinking. If all possible pairs that can be formed shake hands, how many handshakes are there?

b) If the ten friends decide to exchange coats, how many different allocations of coats to people are there?       [4 marks]

A7. You throw a pair of dice three times. What is the probability that the sum of the two dice equals 12 on at least one of the three throws? Show your working.            [5 marks]

A8. Which of the following statements are correct?

a) Regression is a method for solving linear programming problems.

b) Regression is often used in analytics.

c) Regression is technique of statistics.              [4 marks]

A9.

a) Find the value of x that optimizes the function -5x2 + 40x + 500.

b) Does this value achieve a  maximum  or a  minimum  for the function?              [4 marks]

A10. X is a normally distributed variable with mean 0. What is the probability that X is smaller than 0?                   [4 marks]

SECTION B

You must answer TWO questions from this section.

B1. A pub orders cartons of crisps as soon as it runs out. Assume that orders are delivered instantaneously. Each time the shop makes an order it pays a fixed cost £100. Demand is constant at D = 100 cartons per time unit. Storing the cartons in inventory incurs opportunity costs at a rate of 5% per £, time unit, and carton. Each carton’s value is £20.

a)  How many cartons should the pub be ordering every time it places an order, in order to minimise cost per time (while

always meeting demand)?            [20 marks]

b) Is the assumption of instantaneous delivery necessary for your answer to (a) to be correct?            [10 marks]

B2. A plant makes two kinds of products, A and B. Each product

requires machine work and manual work. Each unit of A requires 1 hour of machine work and 2 hours of manual work. Each unit of B requires 2 hours of machine work and 2 hours of manual work. Each day, the plant has available 10 hours of machine work and 12 hours of manual work. Finally, each unit of A generates a profit of £4 and each unit of B generates a profit of £5.

a)  Formulate this problem as a linear program.           [10 marks]

b) What is the maximum profit the plant can achieve and how many units of A and B should it make in order to do so?       [20 marks]

B3. A doctor’s surgery manager is concerned about the doctor’s

time being wasted by missed appointments. She is considering booking more patients into clinic times to ensure that the doctor will be busy even when some patients don’t show for appointments.

A morning clinic has time for 6 patients to be seen and on average 2 patients miss their appointments.  The probability that a patient makes their appointment is 4/6.  To address this, the manager is planning to book 8 patients for each morning clinic.

(a)    Which  probability  distribution   is  most  appropriate  for modelling this situation?  Explain your answer.  [10 marks]

(b)    Based on your answer to (a), calculate the probability that more than 6 patients arrive, and the doctor must either turn patients away or shorten their lunch break.  [15 marks]

(c)    If we were considering a larger group of patients and the probability  of  missing an  appointment was very small. What   other   distribution   might   you   consider   to    be appropriate   for   modelling   the   number   of   missed appointments?    [5 marks]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图