代写Optimization and Algorithms 2023 Exam代做Java程序

Optimization and Algorithms

February 6, 2023

Exam

1. Deconfiicted  trajectories.   A trajectory T of duration T in Rd   is a sequence of T points in Rd, denoted as T = {x(1), x(2), . . . , x(T)}, with x(t) ∈ Rd  for 1 ≤ t ≤ T. Note that t denotes discrete-time; thus t is an integer (such as t = 0, 1, 2, 3. . . .).

Let T1  = {x1 (1), x1 (2), . . . , x1 (T)} and T2  = {x2 (1), x2 (2), . . . , x2 (T)} be two tra- jectories of duration T in Rd.  We say that T1   and T2   are space-decon丑icted if Ⅱx1 (t) - x2 (s)Ⅱ2  > ∈ for 1 ≤ t, s ≤ T, where ∈ is a given positive number. We say that T1  and T2  are time-decon丑icted if Ⅱx1 (t) - x2 (t)Ⅱ2  > ∈ for 1 ≤ t ≤ T.

Consider the following two controlled dynamic linear systems. The state of system

1 at time t is denoted by x1 (t) ∈ Rd , for 1 ≤ t ≤ T and obeys the recursion

x1 (t + 1) = A1x1 (t) + B1u1 (t),    0 ≤ t ≤ T - 1,

where A1  ∈ Rd×d  and B1  ∈ Rd×p  are given matrices, x1 (0) ∈ Rd  is a given initial state and u1 (t) ∈ Rp  is the control input of system 1 at time t, for 0 ≤ t ≤ T - 1. Note that the trajectory T1  depends on the inputs u1 (t), 0 ≤ t ≤ T - 1.

Similarly, for system 2 we have

x2 (t + 1) = A2x2 (t) + B2u2 (t),    0 ≤ t ≤ T - 1.

Note that the trajectory T2  depends on the inputs u2 (t), 0 ≤ t ≤ T - 1.

Finally, let Tref   = {r(1), r(2), . . . , r(T)} be a given, fixed reference trajectory of duration T in Rd.

We want to design the control inputs u1 (t) (0 ≤ t ≤ T - 1) and u2 (t) (0 ≤ t ≤ T - 1) so that:

• the final state x1 (T) of system 1 is as close as possible to a given, desired state p1  ∈ Rd;

• the final state x2 (T) of system 2 is as close as possible to a given, desired state p2  ∈ Rd;

• the trajectories T1  and T2  are time-deconflicted;

• the trajectories T1  and Tref  are space-deconflicted;

• the trajectories T2  and Tref  are space-deconflicted.

One of the following problem formulations is suitable for the given context.

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

2. Unconstrained optimization.  Consider the optimization problem

The point x= 0 is a global minimizer of (7) for one of the following choices of a:

(A) a = -2

(B) a = -1

(C) a = 0

(D) a = 1

(E) a = 2

(F) a = 3

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

Hint:  the numerical values log(2) ≈ 0.7 and log(3) ≈ 1.1 might be useful

3. Gradient  descent  algorithm.   Consider the function f : R2  → R given by f (a, b) = 2/1a2+(a−b) 2 . Suppose we do one iteration of the gradient descent algorithm (applied to f) starting from the point

and using the stepsize 1.

Which of the following points is the next iteration x1 ?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

4. Signal-denoising  as  a  least-squares  problem.    Consider the function f : Rn   → R, f (r) = rT Dr, where D is a given n × n diagonal matrix with positive diagonal entries:

with di  > 0 for 1 ≤ i ≤ n.

Consider the following optimization problem

where the variables to optimize are s ∈ Rp  and v ∈ Rn; the matrix A ∈ Rn×p  and the vectors y ∈ Rn , and s ∈ Rp  are given.  This problem can be interpreted as a signal-denoising problem: we observe y and want to decompose it as the sum of a signal of interest s and noise v; we know that s should be close to the nominal signal s and that v should be close to zero (the larger the di, the more confident we are that the component vi  should be close to zero).

Problem (8) can be reduced to a least-squares problem involving only the variable s, that is, it can be reduced to a problem of the form.

for some matrix A and vector β .

Give A and β in terms of the constants D , y , A, and s.

5. A simple optimization problem.  Consider the function f : R2  → R, f(x) = 2/1xTMx,

where

The constants a and b satisfy 0 < a < b.

Solve in closed-form. the optimization problem

where 1 denotes the vector 1 = (1, 1).

6. A  convex  optimization problem.  Consider the following optimization problem

where the variables to optimize are xi  ∈ R, for 1 ≤ i ≤ n.  The vectors a i  ∈ Rp , 1 ≤ i ≤ n and b ∈ Rp  are given.  The constants ci, 1 ≤ i ≤ n, are also given.  The function g : R R is defined as follows:

Show that (11) is a convex optimization problem.

7. A  convex function  based  on  a  worst-case  representation.    Show that the function f : R R,

f (x) = max {Ⅱ(a + u)x — bⅡ2  :  ⅡuⅡ2 = r}                          (12)

is convex, where the vectors a, b ∈ Rn  and the constant r > 0 are given.

In words:  f takes as input a number x and returns as output the largest value of the expression

Ⅱ(a + u)x — bⅡ2

as u ranges over the sphere centered at the origin and with radius r.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图