代做ECE5550: Applied Kalman Filtering SIMULTANEOUS STATE AND PARAMETER ESTIMATION USING KALMAN FILTERS

ECE5550: Applied Kalman Filtering

SIMULTANEOUS STATE AND PARAMETER ESTIMATION USING KALMAN FILTERS

9.1: Parameters versus states

Until now, we have assumed that the state-space model of the system whose state we are estimating is known and constant.

However, the system model may not be entirely known: We may wish to adapt numeric values within the model to better match the model’s behavior. to the true system’s behavior.

Also, certain values within the system may change very slowly over  the lifetime of the system—it would be good to track those changes.

For example, consider a battery cell. Its state-of-charge can traverse its entire range within minutes. However, its internal resistance might change as little as 20% in a decade or more of regular use.

• The quantities that tend to change quickly comprise the state of the system, and

• The quantities that tend to change slowly comprise the

time-varying parameters of the system.

We know that Kalman filters may be used to estimate the state of a dynamic system given known parameters and noisy measurements.

We may also use (nonlinear) Kalman filters to estimate parameters given a known state and noisy measurements.

In this section of notes we first consider how to estimate the parameters of a system if its state is known.

Next, we consider how to simultaneously estimate both the state and parameters of the system using two different approaches.

The generic approach to parameter estimation

We denote the true parameters of a particular model by θ .

We will use Kalman filtering techniques to estimate the parameters

much like we have estimated the state. Therefore, we require a model of the dynamics of the parameters.

By assumption, parameters change very slowly, so we model them as constant with some small perturbation:

θk = θk1 + rk1 .

The small white noise input rk is fictitious, but models the slow drift in  the parameters of the system plus the infidelity of the model structure.

The output equation required for Kalman-filter system identification must be a measurable function of the system parameters. We use

dk = hk (xk, uk,θ , ek ),

where h(·) is the output equation of the system model being     identified, and ek models the sensor noise and modeling error.

Note that dk is usually the same measurement as zk , but we maintain

a distinction here in case separate outputs are used. Then,

Dk = {d0, d1 , . . . , dk }. Also, note that ek and vk often play the same role, but are considered distinct here.

We also slightly revise the mathematical model of system dynamics

xk = fk−1(xk−1 , uk−1,θ,wk−1)

z k = hk (xk, uk,θ,vk ),

to explicitly include the parameters θ in the model.

Non-time-varying numeric values required by the model may be embedded within f (·) and h(·), and are not included in θ .

9.2: EKF for parameter estimation

Here, we show how to use EKF for parameter estimation.

As always, we proceed by deriving the six essential steps of sequential inference.

EKF step 1a: Parameter estimate time update.

The parameter prediction step is approximated as

This makes sense, since the parameters are assumed constant. EKF step 1b: Error covariance time update.

The covariance prediction step is accomplished by first computing θ˜ k −.k .

We then directly compute the desired covariance

The time-updated covariance has additional uncertainty due to the fictitious noise “driving” the parameter values.

EKF step 1c: Output estimate.

The system output is estimated to be

d(^)k = E[h(xk, uk,θ , ek ) | Dk — 1]

hk (xk , uk , θ(^)k , e-k ).

That is, it is assumed that propagatingθ(^)k and the mean estimation

error is the best approximation to estimating the output.

EKF step 2a: Estimator gain matrix.

The output prediction error may then be approximated

using again a Taylor-series expansion on the first term.

From this, we can compute such necessary quantities as

These terms may be combined to get the Kalman gain

Note, by the chain rule of total differentials,

But,

The derivative calculations are recursive in nature, and evolve over time as the state evolves.

The term dx0/dθ is initialized to zero unless side information gives a better estimate of its value.

To calculateC(^)k(θ) for any specific model structure, we require methods

to calculate all of the above the partial derivatives for that model.

EKF step 2b: State estimate measurement update.

The fifth step is to compute the a posteriori state estimate by

updating the a priori estimate using the estimator gain and the output prediction error dk − d(^)k

EKF step 2c: Error covariance measurement update.

Finally, the updated covariance is computed as

EKF for parameter estimation is summarized in a later table.

Notes:

We initialize the parameter estimate with our best information re. the parameter value: θ(^)0(十) = E[θ0].

We initialize the parameter estimation error covariance matrix:

We also initialize dx0 /dθ = 0 unless side information is available.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图