代写N1550 Data Analytics for Accounting & Finance代做Python语言

N1550 Data Analytics for Accounting & Finance

Assessment Instrument Group Project (assessment type PRJ)

Your Assessment at a glance.

The aim of this assessment is to analyse a dataset of your choice using the techniques covered in the module.

Number of group members

Two

Number of words

2,000 +/- 10% as per Sussex policy.

Word count includes tables and charts that are part of the main body (i.e, not part of any optional appendices)

Word count excludes optional references and appendices.

Please supply tables and charts inline (not at the end). Screenshot all Python code.

References are optional in this assignment (apart from a reference to the dataset), if you include them please use Harvard referencing style.

Percentage of total mark

40%

Deadline

End of Week 10.

Please check Sussex Direct for the definite date and time.

Choice of dataset

You can choose a dataset of your choice, which must meet the following criteria:

1.   It must be a public domain, freely available dataset.

2.   The dataset should ideally contain at least two tables connected by primary keys and foreign keys. If the dataset contains just one table, it should be clear that it has been  denormalised.

3.   The dataset must contain a metric variable which can realistically serve as a dependent variable (for example, a performance score of some kind)

4.   The dataset must contain another metric variable which can realistically serve as an independent variable.

5.   The dataset must contain at least one categorical variable (to assist with analysis). You could create a categorical variable from a metric variable using Python.

6.   The dataset’s main table must contain at least 500 datapoints (double check with module convenor if you are very keen on a dataset which meets all other criteria, just not this one).

A good place to look for suitable datasets is Kaggle (https//www.kaggle.com) but this is not required. The textbook has a list of suitable sites in Chapter 2, Exhibit 2-1, p. 55.

To ensure there is no duplication, each dataset must be approved by the module convenor before the  report  is  submitted.  We  approve  datasets  on  a  first-come  first  served  basis,  meaning if a dataset is already used by other students you can no longer use it for your project.

Approval does not necessarily mean that your dataset meets the above conditions: it remains your responsibility to ensure that it does.

Email your approval request to [email protected], please do not include the actual dataset to avoid large size emails, but just a link to the dataset.

Any report with a dataset that does not meet the above criteria and is not pre-approved will normally be capped at 40%.

Marking criteria

We will assess your report on the basis of the standard criteria for projects at the Year 2 Undergraduate Level, which you can find on Canvas.

More specific marking guidance for this project is provided in the section “Structure of the Report” below.

Structure of report

Use the following structure to write your report:

IMPACT Step

Mark weighting

Minimum required

(Mark guidance 40%- 60%)

Going the extra mile (Mark guidance 60%- 80+%)

1. Identifying the questions

15%

Introduce the

dataset, and three

potential questions you wish to investigate

Include equal contribution

statement (see below).

Introduce the

dataset, and three

potential questions you wish to investigate

Include equal contribution

statement (see below).

2. Mastering the Data

25%

Produce a database model for the

dataset, either ERD or UML.

Identify primary and foreign keys.

Produce a database model for the

dataset, either ERD or UML.

There are multiple tables for the

dataset, and one-to-many

(The model may

contain only one table, but you can and should still identify how the

table was constructed from normalised

tables)

Use Excel VLOOKUP or DB Browser for SQLite to access and join the data into a

denormalised table.

relationships

are clearly identified.

Identify primary and foreign keys.

Use DB Browser for SQLite or Python to import the

data. Join

the datasets with

Pandas and export the final dataset to Excel.

3. Performing test plan

25%

Perform. a regression analysis using Excel

Document the outcome.

The regression result may relate    to your questions.

Perform. a regression analysis using Excel or Python.

Use Python to import

the dataset and highlight some unusual values.

Document the outcome.

The regression result should relate to your questions.

4. Address and Refine Results

25%

Answer the three questions

about your dataset,

and use three

appropriate

visualisations to

illustrate your answers.

Provide a clear and concise narrative.

Answer the three questions

about your dataset,

and use three

appropriate

visualisations to

illustrate your answers.

Include traditional & non- traditional

charts to illustrate

your points (something else other than

pie charts, bar charts, or line charts).

5.

Communicate Insights

10%

Wrap up your report. Write in plain English what you have found.

Wrap up your report.

6. Optional References

7. Optional Appendices

For a definition of some of the terms, please refer to the module lectures, seminars, and textbook.

Document all Python code that is used. A statement such as ‘we used Python’ is not sufficient. Liberally use screenshots to document your points.

All screenshots should be full-screen screenshots. We do not accept partial or strategically cropped screenshots.

Group dynamics

You are expect to produce this report in pairs of two. We will not accept groups of one, or 3 or more. Any report not produced in pairs would normally be capped at 40%.

If you have reasonable adjustments in place for this module, and these adjustments cover your ability to function in a group, please contact the module convenor, and exceptionally you will be able to produce this report on your own.

Each report must contain the following statement: “Both authors contributed equally to the final project report”. Any report without this statement would normally be capped at 40%.

Each member of the group will receive the same mark.

Please make sure each project member contributes equally to the project report. This

doesn’t mean that each project member needs to write exactly 1,000 words, because

contributions can also be made in analysis and data modelling. However, it does mean that hours spent to produce the final deliverable should be more or less equal.

In case of dispute, which cannot be resolved amicably and in time for the deadline: please

submit the report individually and document clearly the source of dispute, and any proposed resolutions that have not helped (outside of the 2,000 word limit).

If you cannot find a student partner through no fault of your own, and you have exhausted all reasonable options, please get in touch with the module convenor. You will then be

assigned another student who is in the same position. You will be expected to work

together as a pair in the same way as other pairs. Such manual assignment will normally be on a first-come first-served basis.

Learning Outcomes being Asssessed

The following two course learning outcomes are being assessed with this instrument:

•    LO2 Work effectively independently and collaboratively

•    LO4 Communicate information, ideas, problems, and solutions to specialist and nonspecialist audiences using a variety of technologies

The following two module learning outcomes are being assessed with this instrument:

•    LO2 Develop and correctly interpret core data management concepts that are

fundamental to the design of modern information systems in accounting and finance

•    LO3 Extract, visualise, and communicate key trends and insights from large datasets in the context of accounting and finance


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图