代写[CMPUT 466/566, Fall 2024] Machine learning帮做Python编程

[CMPUT 466/566, Fall 2024] Machine learning

Course Project Description

Objectives:

1.   [10 marks] The basic goal of the mini-project is for the student to gain first-hand experience in

formulating a task as a machine learning problem and have a rigorous practice of applying machine learning algorithms.

2.   [5 marks] The second goal (optional to undergrads) is to accomplish a non-trivial machine learning

project, such as replicating a recent top-tier machine learning publication (published at ICML, NeurIPS, ICLR, etc.), proposing new models, and empirically analyzing machine learning models in a significant  way. Replicating a paper published at an unknown or non-machine learning venue may not constitute a non-trivial project. The 5 marks count as bonus for undergraduates but are included within 100 total marks for graduate students.

Example non-trivial project: Debiasing with Sufficient Projection: A General Theoretical Framework for Vector Representations

Note that only one project is expected. A non-trivial project must also satisfy the basic requirements.

Team work

Collaboration for the course project is possible only if

1) all team members have already had first-hand experience,

2) they intend to do a non-trivial project, and

3) the team must have no more than three members.

The team has to apply in NOI before the NOI deadline. The application may be declined if any of the team members does not have adequate machine learning background.

If teamwork is approved, the team members (name, ID, and email) and individual contributions must be stated clearly in all submissions. All team members must upload the submissions to their own eClass assignments.

In case the submitted team project only satisfies the basic requirements without any non-trivial components, all team members will share a total of 10 marks.

Timeline and submissions

All due time in this section is in Edmonton time. Every submission has a free extension.

A project intended to satisfy the basic requirements only (10 marks) does not need to submit the notice of intent or a proposal. They only need to submit the final project, and the deadline is 12:30PM, Dec 10 (extended to 12:30PM, Dec 17).

A non-trivial project requires significantly more time than a project satisfying basic requirements only, so a significant amount of time has to be set for the project. It must follow the mandatory timeline:

   Sep 19 (extended to Sep 24): Notice of intent

○    Oct 17 (extended to Oct 22): Proposal

○    Dec 10 (extended to Dec 17): Final report

All deadlines are due by 12:30PM (Edmonton time).

A student must decide early if to attempt a non-trivial project. If so, the student must send a notice of intent (NOI) on eClass by the deadline, which can be a message, a title, or a short description. The NOI will not be reviewed but is mandatory for a non-trivial project.

If several students intend to form. a group, the NOI must also include every team member’s name, email (ccid), and prior experience in machine learning (such as a short bio). The approval of teamwork will be  based on the students’ background and the intended topic.

●   Any team member may leave the team unilaterally and submit a basic project. The rest of the team may still attempt a non-trivial project.

●    If a team is dissolved but there is dispute on who still owns the non-triviality project, then all members of the team fall into the category of basic projects.

○    Example: A team of two students do not wish to work together, but each claims the

ownership of the non-trivial project. Then, both students are ineligible for the non-trivial part.

For the non-trivial project, the student is supposed to read literature and prepare experimental environments after NOI. By the proposal deadline, the student must submit a pdf proposal to eClass. The instructor will read the proposal and make a comment, especially on how non-trivial the proposal is.

Notice that an intended non-trivial project may not get all 15 marks or, if not satisfying the basic requirements, may not even get 10 marks.

Basic Requirements [10 marks]:

●    Formulating a task into a machine learning problem. The student CANNOT re-use any task in coding assignments (namely, house price and MNIST datasets) as the course project.

●    Implementing a training-validation-test infrastructure, with a systematic way of hyperparameter tuning. The meaning of “training,” “validation,” “test,” and “hyperparameter” will be clear very  soon.

●    Comparing at least three machine learning algorithms. In addition, include trivial baselines (if  possible). For example, a majority guess for k-category classification yields 1/k accuracy. The machine learning algorithms must be reasonable for solving the task, and differ in some way   (e.g., having different hyperparameters does not count as different machine learning algorithms).

General machine learning packages may be used for the course project. However, the student cannot use the codebase specific to the task at hand and run a few scripts like “sh run.sh” .

Requirements for a non-trivial project [5 marks]:

A non-trivial project could be either replicating a recent, sophisticated machine learning paper, proposing new models, or conducting empirical analysis of machine learning models in a significant way.

Typically, a non-trivial project involves a significant amount of literature reading, programming, and experimentation. A student would not expect any additional marks by trying some CNN/RNN models, or applying existing code base to a new task in a straightforward way. If a student seeks non-triviality marks by replicating a recent paper, the student should assume the code base of that paper does not exist.

If a student has doubts about how non-trivial the project is, the student may check how much mathematical and algorithmic formulation there is.

Final report submission:

The submission must contain a PDF report and the code to reproduce the results. (Non-complying file format will result in mark deduction.)

The code should be submitted by a zip file through eClass or through a Google Drive link. If using Google Drive link, the student should

●    Make the folder “ Readable” by any university member, but keep the link in their custody except for the submission

●   Sharing the folder with the instructor does not work, because the project may not be graded by the instructor

●    In the event that the link is not kept in the student’s custody (e.g., sharing the link with friends or publishing the link), the student knows that other people may plagiarize the project. If the project is indeed plagiarized by others, the student is liable for Unauthorized Collaboration under SAIP   4c.

Knowingly advising, encouraging, aiding or assisting another person, directly or indirectly, to commit any violation under this policy. [Student Academic Integrity Policy Appendix A, 4c]

The format of the report is flexible, but generally, the report should contain

●   A short introduction, describing the background of the task

●    Problem formulation (what is input, what is output, where did you get the dataset, number of samples, etc.)

●   Approaches and baselines (what are the hyperparameters of each approach/baseline, how do you tune them)?

●    Evaluation metric (what is the measure of success, is it the real goal of the task, or an approximation? If it’s an approximation, why is it a reasonable approximation?)

●    Results. (What is the result of the approaches? How is it compared with baselines? How do you interpret the results?)

   The report should NOT contain code snippets or program outputs.

Grading criteria:

Basic requirements [10 marks]:

●    If the submission is not a machine learning problem, then 0 marks.

●   Otherwise, the grading starts from 10 points. If one or more of the above requirements are not fulfilled, it will result in mark deduction for one or a few points.

●    Presentation enters the mark in a multiplicative way. The factor is 1 be default, if the report is reasonably well written. If the presented content is not readable, then the project will get 0 marks.

Non-triviality [5 marks]: Marking will consider literature review, proposed approach, and experimentation.

Statement of Expectations for AI Use:

AI tools, including but not restricted to generative models and online translation models, are not allowed.

Note: AI-flavored writing demonstrates poor presentation skills. For example, the text is oftentimes grandiose but empty. This will result in a devastatingly low mark (including a mark of 0) by merit, regardless of whether   there is proof of using AI tools.

Tips:

1.   The course project only counts 10--15% of the total marks, and obviously, this course focuses more on math derivations than coding. It is more important to formulate a machine learning system in a rigorous way and complete the project in time than do a super fancy project (which may require too much work and has a risk of not being finished in the course timeline).

2.   In fact, many students sought minimal efforts to obtain non-triviality marks in the past, which is not

possible. In general, not many students got the 5 marks and students should not worry about it. Even  for graduate students, getting a 5-mark deduction is not a problem, because the letter grade cutoff will be adjusted accordingly and may be different from undergraduates.

3.   Using external general-purpose machine learning packages is allowed but should be acknowledged   (e.g., use libsvm to solve the task by a few lines of function call). However, using a code base directly related to your task is not allowed (e.g., download a Git Hub repo and only write a few lines of script like “sh run.sh”).

4.   There is no constraint on the number of pages of the course report. However, the length should reflect the substance of the project, and in a normal case, a few pages suffice. An over-lengthed report will not yield a higher mark. On the contrary, it shows poor presentation skills (and may lead to mark deduction). The report must be written in text with results organized in an appropriate form. (such as tables and figures). Python notebook, code snippets, and program output are not considered as a textual report.

5.   We will grade the course project in a lenient way. However, we do not accept mark negotiation. The basic requirements are clearly stated above. The instructor will adjudicate the degree of non-triviality based on the same criteria applied to all students.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图