代做CMPUT 466/566 (Fall 2024) Syllabus Machine Learning Essentials调试Haskell程序

CMPUT 466/566 (Fall 2024) Syllabus

Machine Learning Essentials

Course Format: The course is offered in person only. When the IT infrastructure allows, the lectures will be broadcasted and recorded. However, the instructor cannot guarantee that IT will work well, in which case pre-recorded videos will be released as a replacement. Exams will be based on in-person lectures.

Lecture time and classroom:

T, Th 12:30PM - 1:50PM, Sep 3 - Dec 9

●    No course activities during the reading week

Online lecture hall: https://meet.google.com/vqo-vkxv-osy

Dial-in: (US) +1 337-573-0059 PIN: 584 572 100#

Lab session (in-person only): Monday 5–7:50PM

   5-6PM: TA’s office hours (CCIS L1-140)

   6-7:50PM: Unattended. TAs will open appointment slots for QA.

Instructor/TA office hours:

With whom

Email

Open door

By appointment

 

Lili Mou (instructor)

 

lmou

Thursday, 3-4PM

ATH4-08

as appropriate

 

Zijun Wu

 

zijun4

 

 

 

 

 

 

 

Monday, 5-6PM CCIS1-160

Tue (2-2:30 PM)

In-person: CSC3-26 Online: meeting link

 

Nicolas Rebstock

 

nrebstoc

Thu (3-3:30 PM)

In-person: CSC3-26 Online: meeting link

Haruto Tanaka

haruto

Thu (10-10:30 AM)  Online: meeting link

Yu Wang

yu35

Mon (9-9:30 AM)

Online: meeting link

Tian Tian

ttian

Tue (2:50-3:20 PM)

Online: meeting link

●   Office hours start from the second week. No office hours on statutory holidays and during the reading week.

●    If a student wishes to make an appointment with a TA (10min each slot), they will send an email to the TA before the date.

   Office hour schedule may be changed depending on the need.

Students are encouraged to reach out to the instructor if TAs’ answer is not satisfactory.

Notes:

The instructor and TAs will not answer assignment-related questions before the solution is released.

COURSE CONTENT

Course Description:


Machine learning teaches a machine to learn from previous experience and makes a

prediction for (possibly new) data. This course covers standard materials of a “ Machine Learning” course, such as linear regression, linear classification, as well as non-linear models. In the process, we will have a systematic discussion on issues such as training criteria, inference criteria, bias-variance tradeoff, etc. The goal of the course is to build a solid foundation of machine learning; so there would be intensive math derivations in lectures, assignments, and  exams.

Course Prerequisites:

Please fulfill the departmental requirements.

The department asks instructors normally not to waive prerequisites.

Course Objectives and Expected Learning Outcomes:

By the end of this course, the student will understand the foundations of machine learning and gain experience in machine learning applications.

Official textbook: Bishop, Pattern Recognition and Machine Learning.

The instructor will provide lecture notes, which may also suffice. If not, please use the above textbook. [survey on textbooks]

References: link

Tentative topic list:

Linear regression

●    Mean squared error (as heuristics)

   Closed-form. solution

   Gradient descent

●    Maximum likelihood estimation

●    Maximum a posteriori training

●    Bias-variance tradeoff

●   Train-validation-test framework

Linear classification

●    Discriminative model: Logistic regression

●    Multi-class softmax

●    Maximum a posteriori inference

●    Generative model: Naïve Bayes

●    Discriminant model: Linear SVM (bonus lecture)

Nonlinear models

●    Neural networks

●    Kernels methods: Non-linear SVMs (bonus lecture)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图