代写CMT117 Knowledge Representation Steven Schockaert 2024-25代写Processing

Assessment Proforma 2024-25

Module Code

CMT117

Module Title

Knowledge Representation

Assessment Title

Problem Sheet 2

Assessment Number

2 of 2

Assessment Weighting

50%

Assessment Limits

Hand-out: 09th of January 2025

Hand-in: 16th of January 2025, 09:30AM

Limits are per task as set in the instructions

The Assessment Calendar can be found under ‘Assessment & Feedback’ in the COMSC-ORG-SCHOOL organisation on Learning Central. This is the single point of truth for (a) the handout date and time, (b) the hand in date and time, and (c) the feedback return date for all assessments.

Learning Outcomes

•  Critically evaluate knowledge representation alternatives to solve a given task

•  Formalize simple problems with a given knowledge representation approach

•  Discuss the theoretical properties of different knowledge representation formalisms

•  Explain the basic principles underlying common knowledge representation approaches

•  Choose an appropriate knowledge representation approach to address the needs of a given application setting

•  Compare how knowledge representation approaches influence the success of a given task

•  Explain the nature, strengths and limitations of knowledge representation technique to an audience of non-specialists

Submission Instructions

The coversheet can be found under Assessment & Feedback’ in the COMSC-ORG-SCHOOL organisation on Learning Central.

You are required to answer 2 multi-part questions on “First-order Logic” and “Description Logics”, as described in detail in the attachment.  The answers should be submitted as a single pdf file.

All submissions must be via Learning Central. Upload the following files:

Description

Type

Name

Coversheet

Compulsory

One PDF (.pdf) file

[student

number] Coversheet.pdf

Answer to all   question parts

Compulsory

One PDF (.pdf) file

[studentnumber].pdf

If you are unable to submit your work due to technical difficulties, please submit your work via e-mailto [email protected] and notify the module leader.

Any deviation from the submission instructions above (including the number and types of files submitted) may result in a reduction in marks for the assessment.

All submissions will be compared to each other and checked against other work available on the Internet and elsewhere to identify cases of potential unfair practice.

Staff reserve the right to invite students to a meeting to discuss coursework submissions.

Assessment Description

Answer all parts of Questions 1 and 2 below. The first question is worth 25 marks and the second question is worth 15 marks. The number of marks available for each question part is indicated.

Question 1: First-Order Logic

1. Translate the sentences below from English into first-order logic.  For each translated sentence provide an explanation of why your first-order sentence captures its En- glish counterpart.

Use the signature S consisting of the unary predicate symbol Region and the binary predicate symbols Disjoint, Included and Overlap and the constant symbols dorset, fife, scotland,england.

(a) Any two regions are either disjoint, overlapping, or one of them is included in another. [0.5 marks]

(b) Every region is included in itself. [0.5 mark]

(c) If two regions are disjoint, they are not overlapping. [0.5 marks]

(d) If two regions are overlapping, none of them is included in another. [0.5 marks]

(e) If one region is included in another, then they are not disjoint. [0.5 marks]

(f) If two regions are disjoint, then any region included in the first one is disjoint from the second one. [0.5 marks]

(g) Dorset and England are regions, Dorset is included in England. [0.5 marks]

(h) Fife and Scotland are regions, Fife is included in Scotland. [0.5 marks]

(i) Scotland and England are disjoint. [0.5 marks]

2.  Do the sentences from Part 1 above logically entail that Dorset does not overlap with Scotland?  Justify your answer by providing a proof using precise semantic argu- ments or by providing a counter-example. [4.5 marks]

3.  Does ∃x.(A(x) ∨ B(x)) |= ∃x.A(x) ∨ ∃x.B(x) hold? Justify your answer by providing a proof using semantic arguments or by providing a counter-example.          [4 marks]

4.  Does ∀x.A(x) → ∀x.B(x) |= ∀x.(A(x) → B(x)) hold? Justify your answer by provid- ing a proof using semantic arguments or by providing a counter-example.  [4 marks]

5. We want to prove that the following argument is true:

If all quakers are reformists and if there is a protestant that is also a quaker, then there must be a protestant who is also a reformist.

Define a set of FOL sentences X and a sentence G capturing this argument and show that X  |= G using semantic arguments. Justify why X and G properly capture the argument.

Hint: You can define the FOL sentences in X and the sentence G using the unary predicate symbols: Quaker, Reformist and Protestant.   [8 marks]

Question 2: Description Logics

1.  Describe an application scenario in which there exist three advantages and one dis- advantage of using the description logic ALC , rather than propositional logic as a language for Knowledge Representation. You need to justify why they are advantages and disadvantages in the context of the proposed application scenario. This does not mean copy-paste from the lecture’s material.  [4 marks]

2. Write down the following

(a) A satisfiable ALC-TBox T such that all the atomic concepts occurring in T are unsatisfiable w.r.t. T. Write down a model of T.     [1 mark]

(b) A satisfiable ALC-knowledge base such that all its models contain at least two domain individuals. Justify your answer.     [1 mark ]

(c) An unsatisfiable ALC-knowledge base whoseTBox is empty. Justify your answer. [1 mark]

(d) An unsatisfiable ALC-TBox. Justify your answer.   [1 mark]

3.  For a chosen application scenario define an EL KB (T, A) capturing relevant termino- logical and assertional knowledge. The EL TBox T must contain at least five GCIs and the ABox A at least five assertions.  Explain what each GCI and assertion is modeling. Define the used vocabulary: concept, role and individual names.         [7 marks]


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图