代写STAB57H3F: An Introduction to Statistics Winter 2025调试R语言程序

STAB57H3F: An Introduction to Statistics

Winter 2025 (last updated on Jan 04, 2025)

1 Course Description

Mathematical treatment of the theory of statistics.  The topics covered include:  the statisti- cal model, data collection, descriptive statistics, estimation, confidence intervals and P-values, likelihood inference methods, distribution-free methods, bootstrapping, Bayesian methods, re- lationship among variables, contingency tables, regression, ANOVA, logistic regression, appli- cations.  Statistical software R will be used.

Contents, emphasis, etc.  of the course is defined by means of the lecture materials - not only the texts. Table 1 shows the tentative lecture guide.  Lecture slides will be uploaded every week. However, they are just rough, point-form notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for attending the lectures, or for doing the weekly non-credit homework.

Important announcements, problem sets,  additional examples,  and other course info will be posted on the course web page on Quercus.  Check it regularly.

Prerequisite: STAB52H3 or STAB53H3

Exclusion: MGEB11H3, PSYB07H3, STAB22H3, STAB23H3, STA220H1, STA261H

Breadth Requirements: Quantitative Reasoning

2 Course Schedule

Lec 01: TUE 9 - 11am, THURS 11am - 12pm

Lec 02: TUE 1 - 3pm, THURS 1 - 2pm

Instructor: Shahriar Shams,

Assistant Professor (teaching stream), Department of Computer and Mathematical Sci- ences, University of Toronto Scarborough.

Email: [email protected] (Please add “STAB57” at the beginning of the sub- ject of your email.  PLEASE!)

O   ce hours: time and details to be announced later.

3 Textbooks

1. Mathematical Statistics and Data Analysis, 3rd Edition, John A. Rice

2. Probability and Statistics: The Science of Uncertainty, Second Edition, by Michael J. Evans and Jefrey S. Rosenthal

Available online on the web-page of Professors Evans and Rosenthal

http://www.utstat.toronto.edu/mikevans/jeffrosenthal/

4 Homework

Every week after the lecture a set of exercises will be provided.   This homework is not for credit.  This is only meant to give students opportunities to learn the materials and prepare themselves for the tests and exam.  TAs will solve some of the harder problems in the tutorials. Tutorials will start from week-2.

5 Tutorials

The tutorials will start on the second week  and run until the last week of class.   Tutorials will cover topics taught in the previous week’s lecture.  In preparation for the tutorials, you should do weekly non-credit homeworks.  There will be short quizzes every week starting from week 3 based on previous week’s lectures and non-credit homeworks. You have to write the quizzes in your assigned tutorial.  Quizzes are open-book (students are also allowed to use lecture notes).  Default score for a missed quiz is zero.  Out of the  10 quiz scores, your best 5 scores will be worth 5% of the course grade.  Quiz marks cannot be shifted to other assessments.

6 Assignments for credit

There will be two assignments (each worth 10%) in the course. Both the assignments are take home and will require some hand calculations and some coding in R. The tentative assignment release dates are : mid-February and mid-March.  Students will be given reasonable time to finish each of the assignments. Clear instructions will be given on how to complete and submit your work. Crowdmark will be used for all the assessments in the course.

7 Evaluation

Midterm test: outside of lecture hours, will be scheduled by the office of registrar.

Final exam: everyone registered in the course will be required to write the exam, will cover everything taught in the course, date and time will be fixed by the office of registrar and will be announced later.

Grades will be calculated using two schemes. The final course grade will be the larger of the two grades.

Assessment

Scheme 1

Scheme 2

Weekly Quizzes

5%

5%

Assignment-1

10%

10%

Assignment-2

10%

10%

Midterm

30%

0%

Final

45%

75%

8 Missed assessment

There are NO make-up assessments of any form in this course.

• Taking the final exam and submitting both the assignments are mandatory for every student in order to pass this course.

•  Students are not required to submit any doctor’s note for missing the midterm.

9 Computing

Statistical software R will be used extensively. Students will learn solving probability problems using simulations in R. No previous exposure is expected and R will be introduced starting from the basics. Any code used in the lectures will be available on the course web-page for students to practice at their own time.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图