代写CET313 – Artificial Intelligence调试数据库编程

CET313 - Artificial Intelligence

Assessment Brief

Intelligent Prototype Development

1. Specification

This assignment is weighted at 100% of the overall module and will be marked out of 100. This assessment requires approximately 40 hours to complete.

The aim of this assessment is to provide you with an opportunity to demonstrate your understanding and practical skills in Artificial Intelligence. You must propose your own project concept, subject to approval by the Module Leader. The assessment is designed to assess your ability to develop a small prototype, evaluate its performance, and compile a comprehensive report. Additionally, you are required to submit a portfolio of evidence from practical exercises undertaken during the course.

1.1.        Learning Outcomes

LO1. Demonstrate comprehension of a range of AI techniques and their

application to problem solving within society, industry, and research.

LO2. Articulate awareness of contemporary developments in the field of AI and

their application and potential implications.

LO3. Critically assess real-world problems and determine which AI approaches

are suitable for their solutions.

1.2. Deadlines

Files submitted via Canvas. Deadline Thursday, 09th January 2025

                                                                         13:59 pm

2. Important Information

All work is to be completed individually, except where explicitly stated, and you will only be able to receive Marks for your own work. You are responsible for the security and integrity of your own files, and you must not permit others access to your assignment work. Plagiarism or paraphrasing without due accreditation will be dealt with severely asset out in the University Infringement of Assessment Regulations and detailed in the Programme Handbook. You can also refer to the library guidebook on plagiarism such as Avoiding plagiarism - University Library Services (sunderland.ac.uk)

Students   are   permitted   to   use AI   tools used   in   an   assistive   role   within   the assessment. However, the student must declare in the submission the used tool(s) and

how did you use it.Examples of where AI might be used in an assistive category include:

•     Drafting and structure content.

•     Supporting the writing process in a limited manner.

•     As a support tutor.

•     Supporting a particular process such as translating content.

•     Giving feedback on content or proofreading content

However, students cannot use AI tools to do the project for you as the work must be completely done by the students. All AI generated content  must  be validated  by the student.

You are expected to submit work in the file formats requested. Submitting links to files saved elsewhere in the cloud will not be considered and will result in a zero mark. The actual files must be loaded to Canvas and readily available to the assessor. After uploading and submitting your files, you must check that you can also retrieve and open them. It is your responsibility to ensure files are not corrupted at the time of submission and to report any issues immediately to the help desk, copying in your lecturer and to seek alternative arrangements when required.

3. Tasks

You are required to complete three main tasks; the tasks details can be found below:

1.   Development of Prototype (30%):

Develop  a  prototype  that  relates  to  the  selected  project.  The  prototype  should showcase your practical skills and knowledge in AI. Ensure the prototype is functional and aligns with the project objectives. For details about the prototype please refer to the scenario.

2.   Evaluative Report (40%):

Write an evaluative report that documents your development process, the performance and  functionality  of  the  prototype,  and  the  extent  to  which  it  meets  the  project objectives. Your report should critically assess the strengths and weaknesses of your prototype,  propose  potential  improvements,  and  discuss  the  implications  of  your findings. The report must include a link to the e-portfolio that has your weekly workshop notebook.

3.   Portfolio of Evidence (30%):

Compile a portfolio of evidence from practical exercises completed during the course. This may include code samples, design documents, project notes, or any relevant material that demonstrates your practical engagement with the course material.

4. Deliverables:

1.   Jupyter notebook with the prototype script. (for the used datasets, you can cite it in the report or upload a zip file that contains the Jupyter notebook and any other required files). The notebook should have comments and must show all the results.

2.  A report explaining each step of the development and containing the link to the e portfolio. The report structure is shown in the next section.

3.   E-portfolio link showing your weekly work. The portfolio must be hosted on university hosting service (no external services are acceptable) and must be accessible to the module delivery teams,

5. Report Structure

The evaluative report must include the following sections:

Cover sheet the cover sheet must be upload filled for the report.

Abstract (less than 150 words): This should provide a high-level overview of the project, including its goals, objectives, and outcomes.

Introduction (1-2 pages): This should provide more detailed information about the project, including its background, motivation, and scope.

Literature Review (1-2 pages): Short literature review of the most relevant research papers on the project.

Methodology (2-3 pages): This should describe the methods and techniques that were used to complete the project.

Results and Discussion (2-3 pages): This should present the findings of the project in a clear and concise manner. The results should be interpreted and  discuss their implications.

References: This should list all the sources that were cited in the report.

6. Scenario

Imagine you are attending a job interview at a charitable organisation and have been asked to prepare a project that demonstrates your skills and professionalism. The focus of the project is to showcase  how  artificial  intelligence  can  be  applied  to  support Alzheimer’s  disease research  or  diagnosis.  For  instance,  you  could  develop  a  machine  learning  model  that classifies individuals as likely or unlikely to have Alzheimer’s. Alternatively, you might predict MMSE (Mini-Mental State Examination) scores using machine learning techniques. You are free to choose your dataset format, whether tabular, image, or audio, as all are acceptable for this project.

7. Marking Criteria

Task 1 - Prototype (30 Marks)

Mark

Range

Level

Description

0-3

Some Trying

The project is incomplete or unrelated to the required work. Minimal effort is evident.

3-6

Beginner

Some work has been attempted, but the project lacks completeness and coherence. Key elements are missing.

6-9

Basic

A basic code implementation is present, but parts may be incomplete or non-functional. The project demonstrates foundational understanding but limited progress.

9-12

Developing

A simple prototype has been created, similar to an in-lab exercise. Basic functionality is achieved, but there’s limited development beyond essentials.

12-15

Good

A working prototype is evident, with most development steps completed. There is some demonstration of understanding, though analysis may be minimal.

15-18

Merit

A well-developed prototype with clear comparisons between different models or methods. The project demonstrates a good level of understanding and effective analysis.

18-21

Very Good

A robust prototype with detailed comparisons and evaluations of models/methods. The work shows a thorough understanding and accurate analysis.

21-24

Excellent

A professionally executed project with all development steps completed. The project includes comprehensive and detailed comparisons with other models/methods.

24-27

Excellent and Thorough

A complete project with all steps professionally executed, including extensive comparisons with other models/methods and relevant literature.

27-30

Expert

An expertly developed project that meets all requirements to a high standard, with detailed, professional comparisons of models/methods and integration of relevant literature for a well-rounded analysis.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图