代写Applied Econometrics (2024/2025 Semester 1) –– Assignment 1代写数据结构语言

Applied Econometrics (2024/2025 Semester 1) -- Assignment 1

Instructions:

1.  This assignment paper has a total of 100 marks, and contributes 25% to the course’s overall assessment.

2. Write down your solution/answer to each question in the space provided in THIS assignment paper.

3. Necessary calculations and/or formulas MUST be included in your solutions/answers.

4. Key concepts/methods/formulas and t-table can be found from the textbook or lecture notes, or from the review document available from the course iSpace.

5. Round your calculation results to THREE (3) decimals to achieve higher accuracy, unless clearly unnecessary.

Miss Ariel, a smart girl of the beautiful Ultimate Imagination College (UIC) which currently has 9,260 students, is attending an Artistic Emotion (AE) class. Because of her learning experience, she is interested in examining whether or not harder study will lead to better learning outcome and, if yes, by how much, which can be simplified to examine the relationship between GPA (y) and average daily study-hour (x). For that purpose, yesterday she went to UIC’s University Road, to do a survey. She randomly surveyed 10 UIC students with each student’s GPA (y) and average daily study-hour (x) recorded as follows, where, taking student #5 for example, x5 = 12 andy5 = 3.3 imply that she (or he) studied 12 hours everyday in average and her (or his) latest GPA was 3.3.

Student #: i

1

2

3

4

5

6

7

8

9

10

Average daily study-hour: xi

11

7

10

6

12

9

6

8

9

11

GPA: yi

3.2

2.6

3. 1

2.6

3.3

3.0

2.4

2.9

2.8

3.4

Five sample sums have been calculated from this sample data set as follows:

Part A. Basic concepts (15 marks)

Q01 (2 marks): What is the appropriate population for the survey (or the random sample)?

Q02 (3 marks): How many different samples of 10 students could be drawn from the population indicated in Q01?

Q03 (10 marks): For and just for this question (Q03) only, suppose that Mr. Simon also randomly surveyed 10 students yesterday from the same population indicated in Q01.

Q03a (2 marks): Are Ariel’s and Simon’s samples the same (i.e., do they have the same 10 students?)

Q03b (2 marks): Will the two samples have the same average GPA?

Q03c (2 marks): Which of the two samples will have an average GPA closer to the population average?

Q03d (2 marks): Will the two samples produce the same sample regression model to explain GPA (y) using average daily study-hour (x)?

Q03e (2 marks): Which of the two samples will produce a sample regression model closer to the population regression model?

Part B. Calculate the sample statistics (20 marks)

Q04 (1 mark): Sample mean ofx. _____________________________________________________________

Q05 (1 mark): Sample mean of y. _____________________________________________________________

Q06 (2 marks): Sample variance of x. _____________________________________________________________

Q07 (2 marks): Sample variance of y. _____________________________________________________________

Q08 (1 mark): Sample standard deviation of x. ______________________________________________________

Q09 (1 mark): Sample standard deviation of y. ______________________________________________________

Q10 (2 marks): Sample covariance between x and y. __________________________________________________

Q11 (2 marks): Sample correlation coefficient between x and y. ________________________________________

Q12 (2 marks): Standard error of sample mean of x. __________________________________________________

Q13 (2 marks): Standard error of sample mean of y. __________________________________________________

Q14 (4 marks): Briefly explain why standard error of sample mean of y (in Q13) is much smaller than the standard deviation of y (in Q09). What is the major implication of this?

Q14a (2 marks): Reasons. _____________________________________________________________________

Q14b (2 marks): Implication. _____________________________________________________________________

Part C. Inference for population mean (30 marks)

Q15 (10 marks): Test the null hypothesis (H0) that the population’s average GPA (μy) is 3.0 against a two-sided alternative hypothesis (H1) at the 5% significance level.

Q15a (2 marks): State the two hypotheses formally in symbols.

Q15b (3 marks): Calculate the sample t-statistic. __________________________________________________

Q15c (2 marks): Find the (two-sided) critical value from the t-distribution table. __________________________

Q15d (3 marks): Draw conclusions. _____________________________________________________________

Q16 (10 marks): Test the null hypothesis (H0) that the population’s average GPA (μy) is 2.7 against a right-sided alternative hypothesis (H1) at the 5% significance level.

Q16a (2 marks): State the testing problem formally in symbols. _______________________________________

Q16b (3 marks): Calculate the sample t-statistic. __________________________________________________

Q16c (2 marks): Find the (one-sided) critical value from the t-distribution table. __________________________

Q16d (3 marks): Draw conclusions. _____________________________________________________________________

Q17 (6+4 marks): First construct a 95% confidence interval for the population mean (μx) of average daily study- hours, and then test whether μx is equal to 10 against a two-sided alternative hypothesis at the 5% significance level based on this confidence interval. How about μx = 11?

Q17a (6 marks): Confidence interval.

Q17b (4 marks): Hypothesis testing.

Part D. Simple linear regression: basic calculations and interpretations (35 marks)

This Part relates to a simple linear regression model estimated using David’s sample data (together with the results in Part B) and the ordinary least squares (OLS) method: yi =  β(ˆ)0   +  β(ˆ)1 xi + ûi ŷi + ûi, where ŷi =  β(ˆ)0   +  β(ˆ)1 xi is the model-fitted or forecast yi corresponding to xi and ûi is the corresponding residual for student i (i = 1, 2, … , 10).

Q18 (3+2 marks): Find  β(ˆ)1 , and explain its meaning.

Q19 (2+2 marks): Find  β(ˆ)0  , and explain its meaning.

Q20 (2+3 marks): Find R2, which is just the squared sample correlation coefficient between y and x for simple regression, and explain its meaning.

Q21 (1 mark): Find the total sum of squares of x (SSTx). _______________________________________________

Q22 (1 mark): Find the total sum of squares of y (SST). _______________________________________________

Q23 (3 marks): Find the residual sum of squares (SSR). _______________________________________________

Q24 (2 marks): Find the standard error of regression ( ). _____________________________________________

Q25 (3 marks): Find the standard error of βˆ1. _______________________________________________________

Q26 (2 marks): Is the standard error of βˆ1 small or big? _______________________________________________

Q27 (3 marks): Find the standard error of βˆ0. ______________________________________________________

Q28 (3+3 marks): For student #5, find her model-fitted GPA (ŷ5) and comment on her actual study performance. ______________________________________________________




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图