代做Optimization and Algorithms 2022 Exam代做Python编程

Optimization and Algorithms

February 22, 2022

Exam

1. Simple convex function. (3 points) One of the following six functions R → R is convex:

(A) (1 − (x − 1)+)+

(B) |(x − 1)+ − 1|

(C) -(1 − (x − 1)+)+

(D) ((x − 1)+ − 1)+

(E) -((x − 1)+ − 1)+

(F) -|(x − 1)+ − 1|

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

2. Least-squares. (2 points) Consider the following six optimization problems:

In each of the six problems above, the variable to optimize is x ∈ Rn . The matrix A and the vector b are given. The scalar ρ > 0 is also given.

One of the optimization problems above is a least-squares problem.

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

3. Convex function. (3 points) Let f : Rn → R be a convex function. One of the following functions is guaranteed to be convex:

(A) |f(x)|

(B) f(x) + (f(x))2

(C) (f(x))2

(D) f(x)(f(x))2

(E) |f(x)| + (f(x))2

(F) f(x) + |f(x)|

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

4. Robust portfolio selection. (4 points) A problem that often occurs in finance has the following form.

where the variable to optimize is x ∈ Rn .

The matrices V1 ∈ Rp×n , V2 ∈ Rp×n , and D ∈ Rp×p are given, the matrix D being diagonal with positive entries in the diagonal:

with di > 0 for i = 1, . . . , p.

The vectors µ1 ∈ Rn , µ2 ∈ Rn and the scalar α ∈ R are given. Finally, recall that the symbol 1 stands for the vector of dimension n with all components equal to one:

Show that the optimization problem (1) is convex.

5. Mahalanobis projection. (4 points) Consider the optimization problem

where the variable to optimize is x ∈ Rn . The vector µ ∈ Rn and the matrix Σ ∈ Rn×n are given, with Σ being symmetric and positive definite.

Show that the optimal value of problem (2) is

6. Strictly convex functions. (4 points) Suppose that the functions f1 : Rn → R and f2 : Rn → R are both convex, and let f : Rn → R be defined as f(x) = max{f1(x), f2(x)} for each x ∈ Rn . Is the function f strictly convex? If you think the answer is ‘yes’, then prove it; if you think the answer is ‘no’, then give a counter-example.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图