代写Optimization and Algorithms 2021 Exam调试R语言程序

Optimization and Algorithms

November 25, 2021

Exam

1. Nonconvex function. (3 points) One of the following functions f : R → R is not convex:

(A) f(x) = (x 2 − x)+ − x

(B) f(x) = − ((x+))2 + x 2 + x

(C) f(x) = (x − x+) 2 − x

(D) f(x) = ((x+))2 − x 2 + x

(E) f(x) = x+ + x 2 − x

(F) f(x) = (x + x+) 2 − (x+) 2

Which one?

Write your answer (A, B, C, D, E, or F) here:                  

2. Least-squares. (2 points) Consider the following six optimization problems:

In each of the six problems above, the variable to optimize is x ∈ Rn . The matrices A and B, and the vector c are given. The scalar ρ is also given and is positive: ρ > 0.

One of the optimization problems above is not a least-squares problem.

Which one?

Write your answer (A, B, C, D, E, or F) here:              

3. Optimal value of a constrained problem. (3 points) Consider the constrained problem

where the variable to optimize is (x1, . . . , xN ), with xn ∈ Rd for 1 ≤ n ≤ N. The matrices Rn ∈ Rd×d are given for 1 ≤ n ≤ N. Assume that each Rn is a symmetric, positive-definite matrix. The vector s ∈ Rd is also given.

One of the following expressions is the minimum value that f attains over the feasible set, that is, one of the following expressions is the number min{f(x1, . . . , xN ): x1 + · · · + xN = s}:

Which one?

Write your answer (A, B, C, D, E, or F) here:              

4. Sparse linear regression with asymmetric loss. (4 points) Consider the optimization problem

where the variable to optimize is (s, r) ∈ Rn × R. The vectors xk ∈ Rn and the scalars yk ∈ R are given for 1 ≤ k ≤ K. The scalars α, β, and ρ are given and denote positive constants: α > 0, β > 0, and ρ > 0. The functions (·)− and (·)+ are defined as (z)− = max{−z, 0} and (z)+ = max{z, 0} for z ∈ R.

Show that the function f is convex.

5. A simple control problem. (4 points) Consider the optimization problem

where the variables to optimize are xt ∈ Rn for 1 ≤ t ≤ T and ut ∈ Rp for 1 ≤ t ≤ T − 1. The vector xinitial ∈ Rn and the matrices Dt ∈ Rn×p are given for 1 ≤ t ≤ T − 1. The scalar ρ is also given and denotes a positive constant: ρ > 0.

Give a closed-form. solution for the optimal {ut : 1 ≤ t ≤ T − 1}.

6. Moureau envelope. (4 points) Let f : R → R be a convex function. For λ > 0, we define a function eλ[f]: R → R as follows: for x ∈ R, the image of x under the function eλ[f] is the number min{f(u) + 2λ/1 (u − x) 2 : u ∈ R}.

That is, the function eλ[f] maps each number x to the number eλ[f](x), where eλ[f](x) is the minimum value attained by f(u) + 2λ/1 (u − x) 2 as u varies in R.

Let λ1 > 0 and λ2 > 0. Show that

eλ1 [eλ2 [f]](x) = eλ1+λ2 [f](x),

for each x ∈ R.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图