首页
服务项目
代写案例
服务流程
客户好评
联系我们
2024 ICS 代做、代写 C++语言程序
2024 ICS Lab4: Tiny Shell
Assigned: Dec. 02, Due: Sat, Jan. 04, 2025, 11:59PM
Introduction
The purpose of this lab is to become more familiar with the concepts of process control and signalling. You’ll do this by writing a simple Unix shell program that supports job control.
Logistics
Any clarifications and revisions to the lab will be posted on the course Web page.
Hand Out Instructions
You can get the Tiny Shell Lab with git from the ICS Course Server, you just need to switch lab4 branch
git fetch
git checkout lab4
It contains 26 files, one of which is called “README”. Please read “README” to check if you have all the files.
After making sure you get the right handout. Then do the following:
• Type the command make to compile and link some test routines.
• Type your name and student ID in the header comment at the top of tsh.c.
Looking at the tsh.c (tiny shell) file, you will see that it contains a functional skeleton of a simple Unix shell. To help you get started, we have already implemented the less interesting functions. Your assignment is to complete the remaining empty functions listed below. As a sanity check for you, we’ve listed the approximate number of lines of code for each of these functions in our reference solution (which includes lots of comments).
1
• eval: Main routine that parses and interprets the command line. [70 lines]
• builtin_cmd: Recognizes and interprets the built-in commands: quit, fg, bg, and jobs. [25 lines]
• do_bgfg: Implements the bg and fg built-in commands. [50 lines]
• waitfg: Waits for a foreground job to complete. [20 lines]
• sigchld_handler: Catches SIGCHILD signals. 80 lines]
• sigint_handler: Catches SIGINT (ctrl-c) signals. [15 lines]
• sigtstp_handler: Catches SIGTSTP (ctrl-z) signals. [15 lines]
Each time you modify your tsh.c file, type make to recompile it. To run your shell, type tsh to the command line:
unix> ./tsh
tsh> [type commands to your shell here]
General Overview of Unix Shells
A shell is an interactive command-line interpreter that runs programs on behalf of the user. A shell repeatedly prints a prompt, waits for a command line on stdin, and then carries out some action, as directed by the contents of the command line.
The command line is a sequence of ASCII text words delimited by whitespace. The first word in the command line is either the name of a built-in command or the pathname of an executable file. The remaining words are command-line arguments. If the first word is a built-in command, the shell immediately executes the command in the current process. Otherwise, the word is assumed to be the pathname of an executable program. In this case, the shell forks a child process, then loads and runs the program in the context of the child. The child processes created as a result of interpreting a single command line are known collectively as a job. In general, a job can consist of multiple child processes connected by Unix pipes.
If the command line ends with an ampersand ”&”, then the job runs in the background, which means that the shell does not wait for the job to terminate before printing the prompt and awaiting the next command line. Otherwise, the job runs in the foreground, which means that the shell waits for the job to terminate before awaiting the next command line. Thus, at any point in time, at most one job can be running in the foreground. However, an arbitrary number of jobs can run in the background.
For example, typing the command line tsh> jobs
causes the shell to execute the built-in jobs command. Typing the command line T 2
tsh> /bin/ls -l -d
runs the ls program in the foreground. By convention, the shell ensures that when the program begins executing its main routine
int main(int argc, char *argv[])
the argc and argv arguments have the following values:
• argc == 3,
• argv[0] == “/bin/ls”, • argv[1]== “-l”,
• argv[2]== “-d”.
Alternatively, typing the command line tsh> /bin/ls -l -d &
runs the ls program in the background.
Unix shells support the notion of job control, which allows users to move jobs back and forth between background and foreground, and to change the process state (running, stopped, or terminated) of the processes in a job. Typing ctrl-c causes a SIGINT signal to be delivered to each process in the foreground job. The default action for SIGINT is to terminate the process. Similarly, typing ctrl-z causes a SIGTSTP signal to be delivered to each process in the foreground job. The default action for SIGTSTP is to place a process in the stopped state, where it remains until it is awakened by the receipt of a SIGCONT signal. Unix shells also provide various built-in commands that support job control. For example:
• jobs: List the running and stopped background jobs.
• bg
: Change a stopped background job to a running background job.
• fg
: Change a stopped or running background job to a running in the foreground. • kill
: Terminate a job.
The tsh Specification
Your tsh shell should have the following features: • The prompt should be the string “tsh> ”.
3
• The command line typed by the user should consist of a name and zero or more arguments, all separated by one or more spaces. If name is a built-in command, then tsh should handle it immediately and wait for the next command line. Otherwise, tsh should assume that name is the path of an executable file, which it loads and runs in the context of an initial child process (In this context, the term job refers to this initial child process).
• tsh need not support pipes (|) or I/O redirection (< and >).
• Typing ctrl-c (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to the current foreground job, as well as any descendents of that job (e.g., any child processes that it forked). If there is no foreground job, then the signal should have no effect.
• If the command line ends with an ampersand &, then tsh should run the job in the back- ground. Otherwise, it should run the job in the foreground.
• Each job can be identified by either a process ID (PID) or a job ID (JID), which is a positive integer assigned by tsh. JIDs should be denoted on the command line by the prefix ’%’. For example, “%5” denotes JID 5, and “5” denotes PID 5. (We have provided you with all of the routines you need for manipulating the job list.)
• tsh should support the following built-in commands:
– The quit command terminates the shell.
– The jobs command lists all background jobs.
– The bg
command restarts
by sending it a SIGCONT signal, and then runs it in the background. The
argument can be either a PID or a JID.
– The fg
command restarts
by sending it a SIGCONT signal, and then runs it in the foreground. The
argument can be either a PID or a JID.
• tsh should reap all of its zombie children. If any job terminates because it receives a signal that it didn’t catch, then tsh should recognize this event and print a message with the job’s PID and a description of the offending signal.
Checking Your Work
We have provided some tools to help you check your work. Before you run any executable program, please make sure it has the execution permission. If not, use “chmod +x” to give it the execution permission.
Reference solution. The Linux executable tshref is the reference solution for the shell. Run this program to resolve any questions you have about how your shell should behave. Your shell should emit output that is identical to the reference solution (except for PIDs, of course, which change from run to run).
Shell driver. The sdriver.pl program executes a shell as a child process, sends it commands and signals as directed by a trace file, and captures and displays the output from the shell.
Use the -h argument to find out the usage of sdriver.pl: 4
unix> ./sdriver.pl -h
Usage: sdriver.pl [-hv] -t
-s
-a
Options:
-h -v -t -s -a -g
Print this message Be more verbose
Trace file
Shell program to test
Shell arguments
Generate output for autograder
We have also provided 16 trace files (trace{01-16}.txt) that you will use in conjunction with the shell driver to test the correctness of your shell. The lower-numbered trace files do very simple tests, and the higher-numbered tests do more complicated tests.
You can run the shell driver on your shell using trace file trace01.txt (for instance) by typing: unix> ./sdriver.pl -t trace01.txt -s ./tsh -a ”-p”
(the -a ”-p” argument tells your shell not to emit a prompt), or
unix> make test01
Similarly, to compare your result with the reference shell, you can run the trace driver on the reference shell by typing:
unix> ./sdriver.pl -t trace01.txt -s ./tshref -a ”-p”
or
unix> make rtest01
For your reference, tshref.out gives the output of the reference solution on all races. This might be more convenient for you than manually running the shell driver on all trace files.
The neat thing about the trace files is that they generate the same output you would have gotten had you run your shell interactively (except for an initial comment that identifies the trace). For example:
bass> make test15
./sdriver.pl -t trace15.txt -s ./tsh -a ”-p” #
# trace15.txt - Putting it all together
#
tsh> ./bogus
./bogus: Command not found.
tsh> ./myspin 10
Job (9721) terminated by signal 2
tsh> ./myspin 3 &
[1] (9723) ./myspin 3 &
5
tsh> ./myspin 4 &
[2] (9725) ./myspin 4 &
tsh> jobs
[1] (9723) Running ./myspin 3 & [2] (9725) Running ./myspin 4 & tsh> fg %1
Job [1] (9723) stopped by signal 20 tsh> jobs
[1] (9723) Stopped
[2] (9725) Running
tsh> bg %3
%3: No such job
tsh> bg %1
[1] (9723) ./myspin 3 &
tsh> jobs
[1] (9723) Running
[2] (9725) Running
tsh> fg %1
tsh> quit
bass>
Hints
• Read every word of Chapter 8 (Exceptional Control Flow) in your textbook.
• Use the trace files to guide the development of your shell. Starting with trace01.txt, make sure that your shell produces the identical output as the reference shell. Then move on to trace file trace02.txt, and so on.
• The waitpid, kill, fork, execve, setpgid, and sigprocmask functions will come in very handy. The WUNTRACED and WNOHANG options to waitpid will also be useful.
• When you implement your signal handlers, be sure to send SIGINT and SIGTSTP signals to the entire foreground process group, using ”-pid” instead of ”pid” in the argument to the kill function. The sdriver.pl program tests for this error.
• One of the tricky parts of the lab is deciding on the allocation of work between the waitfg and sigchld_handler functions. We recommend the following approach:
– In waitfg, use a busy loop around the sleep function. – In sigchld_handler, use exactly one call to waitpid.
While other solutions are possible, such as calling waitpid in both waitfg and sigchld_handler, these can be very confusing. It is simpler to do all reaping in the handler.
• In eval, the parent must use sigprocmask to block SIGCHLD signals before it forks the child, and then unblock these signals, again using sigprocmask after it adds the child to the job list
6
./myspin 3 & ./myspin 4 &
./myspin 3 & ./myspin 4 &
by calling addjob. Since children inherit the blocked vectors of their parents, the child must be sure to then unblock SIGCHLD signals before it execs the new program.
The parent needs to block the SIGCHLD signals in this way in order to avoid the race condition where the child is reaped by sigchld_handler (and thus removed from the job list) before the parent calls addjob.
• Programs such as more, less, vi, and emacs do strange things with the terminal settings. Don’t run these programs from your shell. Stick with simple text-based programs such as /bin/ls, /bin/ps, and /bin/echo.
• When you run your shell from the standard Unix shell, your shell is running in the foreground process group. If your shell then creates a child process, by default that child will also be a member of the foreground process group. Since typing ctrl-c sends a SIGINT to every process in the foreground group, typing ctrl-c will send a SIGINT to your shell, as well as to every process that your shell created, which obviously isn’t correct.
Here is the workaround: After the fork, but before the execve, the child process should call setpgid(0, 0), which puts the child in a new process group whose group ID is identical to the child’s PID. This ensures that there will be only one process, your shell, in the foreground process group. When you type ctrl-c, the shell should catch the resulting SIGINT and then forward it to the appropriate foreground job (or more precisely, the process group that contains the foreground job).
Evaluation
Your score will be computed out of a maximum of 90 points based on the following distribution:
80 Correctness: 16 trace files at 5 points each.
10 Style points. We expect you to have good comments (5 pts) and to check the return value of EVERY system call (5 pts).
Your solution shell will be tested for correctness on a Linux machine, using the same shell driver and trace files that were included in your lab directory. Your shell should produce identical output on these traces as the reference shell, with only two exceptions:
• The PIDs can (and will) be different.
• The output of the /bin/ps commands in trace11.txt, trace12.txt, and trace13.txt will be different from run to run. However, the running states of any mysplit processes in the output of the /bin/ps command should be identical.
We have provided you with a test le called grade-shlab.pl. Following is the example of correct case:
7
unix> ./grade-shlab.pl -f tsh.c
CS:APP Shell Lab: Grading Sheet for tsh.c
Part 0: Compiling your shell
gcc -Wall -O2 tsh.c -o tsh
gcc -Wall -O2 myspin.c -o myspin gcc -Wall -O2 mysplit.c -o mysplit gcc -Wall -O2 mystop.c -o mystop gcc -Wall -O2 myint.c -o myint
Part 1: Correctness Tests
Checking trace01.txt...
Checking trace02.txt...
Checking trace03.txt...
Checking trace04.txt...
Checking trace05.txt...
Checking trace06.txt...
Checking trace07.txt...
Checking trace08.txt...
Checking trace09.txt...
Checking trace10.txt...
Checking trace11.txt...
Checking trace12.txt...
Checking trace13.txt...
Checking trace14.txt...
Checking trace15.txt...
Checking trace16.txt... Preliminary correctness score: 80
Hand In Instructions
• You only need to commit the tsh.c file to svn server if you modify it.
• Make sure you have included your name and student ID in the header comment of tsh.c.
We strongly recommend you to multiple commit your code to svn during implementation. Good luck! Have fun!
8
热门主题
代做fin2001s economics and m...
01-21
代写soc1101c winter 2025 pri...
01-21
代做carbon storage (eaee e43...
01-21
代做ofrm 2024-2 individual a...
01-21
代做position control system ...
01-21
代做csmad applied data scien...
01-21
代写eecs 112l introduction t...
01-21
代做info6007/info3333 projec...
01-21
代做553.420/620 probability ...
01-21
代做history of world civiliz...
01-21
代做msin0023 computational t...
01-21
代做cit 5940 - module 1 prog...
01-21
代做ca 1 – satellite missio...
01-21
代写fina3326 applied financi...
01-21
代做position control system ...
01-21
代做115020 accounting fundam...
01-21
代做553.420/620 probability ...
01-21
代写f24 ece 551 hw04代写r编程
01-21
代做tu2983: advanced databas...
01-21
代写mcs 300 debates in globa...
01-21
课程名
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
站长地图