代写ECE5550: Applied Kalman Filtering NONLINEAR KALMAN FILTERS代写Java编程

ECE5550: Applied Kalman Filtering

NONLINEAR KALMAN FILTERS

6.1: Extended Kalman filters

We return to the basic problem of estimating the present hidden state (vector) value of a dynamic system, using noisy measurements that    are somehow related to that state (vector).

We now examine the nonlinear case, with system dynamics xk = fk1(xk1, uk1,wk1)

z k = hk (xk, uk,vk ),

where uk is a known (deterministic/measured) input signal,wk is a    process-noise random input, and vk is a sensor-noise random input.

There are three basic nonlinear generalizations to KF

Extended Kalman filter (EKF): Analytic linearization of the model at each point in time. Problematic, but still popular.

Sigma-point (Unscented) Kalman filter (SPKF/UKF): Statistical/ empirical linearization of the model at each point in time. Much  better than EKF, at same computational complexity.

Particle filters : The most precise, but often thousands of times more computations required than either EKF/SPKF. Directly

approximates the integrals required to compute f (xk | Zk ) using Monte-Carlo integration techniques.

In this chapter, we present the EKF and SPKF.

The Extended Kalman Filter (EKF)

The EKF makes two simplifying assumptions when adapting the general sequential inference equations to a nonlinear system:

• In computing state estimates, EKF assumes E[fn(x)] ≈ fn(E[x]);

• In computing covariance estimates, EKF uses Taylor series to

linearize the system equations around the present operating point.

Here, we will show how to apply these approximations and

assumptions to derive the EKF equations from the general six steps.

EKF step 1a: State estimate time update.

The state prediction step is approximated as

ˆ(x) = E[fk1(xk1 , uk1,wk1) | Zk1]

fk1(ˆ(x)1 , uk1 , ¯(w)k1),

where ¯(w)k1  = E[wk1]. (Often,¯(w)k1  = 0.)

That is, we approximate the expected value of the state by assuming

it is reasonable to propagateˆ(x)1  and¯(w)k1  through the state eqn.

EKF step 1b: Error covariance time update.

The covariance prediction step is accomplished by first making an

approximation for˜(x) .

x˜k − = xk − ˆxk −

= fk−1(xk−1, uk−1, wk−1) − fk−1(xˆk + −1, uk−1, w¯ k−1).

The first term is expanded as a Taylor series around the prior

operating “point” which is the set of values {ˆ(x)1 , uk1 , ¯(w)k1}

Defined as k — 1

Defined as k — 1

k ( k1k(十)1 ).

Substituting this to find the predicted covariance:

k1Σ,k 1 k(T) 1 k1k(T) 1 .

Note, by the chain rule of total differentials,

0

0

Similarly,

The distinction between the total differential and the partial differential is not critical at this point, but will be when we look at parameter

estimation using extended Kalman filters.

EKF step 1c: Output estimate (where k = E[vk ]).

The system output is estimated to be

k = E[hk (xk, uk,vk ) | Zk — 1] hk (^(x)k , uk, v-k ).

That is, it is assumed that propagating xˆk − and the mean sensor noise is the best approximation to estimating the output.

EKF step 2a: Estimator gain matrix.

The output prediction error may then be approximated

using again a Taylor-series expansion on the first term.

z k hk (^(x)k , uk, v-k )

Note, much like we saw in Step 1b,

From this, we can compute such necessary quantities as

z˜,k ≈ˆCk − ˜x,kˆCk T +ˆDk v˜ˆDk T , − ˜x˜z,k

≈ E[(x˜k −(ˆCk x˜k −ˆDkv˜k) T ] =  x − ˜,kˆCk T .

These terms may be combined to get the Kalman gain

Lk =  − ˜ x, kCk T Cˆk x − ˜,kCˆTk+ Dˆk v˜ DˆTk−1.

EKF step 2b: State estimate measurement update.

The fifth step is to compute the a posteriori state estimate by updating the a priori estimate

^(x)k(十) = ^(x)k Lk (z k k ).

EKF step 2c: Error covariance measurement update.

Finally, the updated covariance is computed as

+ ˜ x, k = − ˜ x, k − Lk z˜ , kLk T = (I − Lk ˆ Ck)x − ˜ , k.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图