代做FIN 532 Investment Theory Problem Set 1 Fall 2024调试Matlab程序

FIN 532 Investment Theory

Problem Set 1

Fall 2024

1 Risk, Preferences, and Asset Allocation

1. You bought 100 shares of ABC Inc.  common stock at $100 per share today at the opening of the market.   ABC  Inc.    just  announced  a  dividend  of $2.00  per  share payable in exactly one year from today.  It is widely believed that one year from now the economy will either be in a ‘recession’, a state of ‘normal growth’, or a ‘boom’ with probabilities of 30%, 40%, and 30% respectively.  After analyzing ABC Inc.  you are convinced that the price of ABC stock a year from now in these various states of the economy will be:

State of Economy

Price of ABC ShareB

Recession

Normal Growth

Boom

$80 $110 $130

What are your estimated expected return and volatility over the next year to your investment in ABC stock?

2. TNC mutual fund invests 25% of their assets in IBM stock, 50% in GE stock, and 25% in T-Bills. You invested 50% of your wealth in TNC mutual fund and rest in the T-Bills. What percentage of your wealth is invested in each stock and in the T-Bills?

3.  Suppose we are in a world with two equally likely states u and d.  And we have three stocks A, B and C. Their net returns are given by the following table.

Stock

u

d

A B C

10% 20% 15%

20% 10% 14%

Table 1: The net returns of the stocks.

Can you find a risk-averse investor who prefers stock A (or B) to stock C? Explain.

4. Now suppose the net returns of the three stocks are given by table 2.

Stock

u

d

A B C

10% 20% 15%

20% 10% 15%

Table 2: The net returns of the stocks.

(a) Let ˜rA and ˜rC be the net returns of stocks A and C respectively. Can you find a random variable ˜z such that ˜rA = ˜rC + ˜z and E[˜z] = 0?

(b) Can you find a risk-averse investor who prefers stock A (or B) to stock C?

5. Consider a risky portfolio that ofers a rate of return of 15% per year with a standard deviation of 20% per year.  Suppose an investor with mean-variance preferences is indiferent between investing in the risky portfolio and investing in a risk free asset earning 8% per year.

a) What is the investor's risk aversion coefficient?

b) If allowed to invest in a combination of the risky portfolio and the risk free asset, what proportion would the investor hold in the risky portfolio?

c) What is the expected rate of return and the standard deviation of the rate of return on the optimally chosen combination?

d) What would be the investor's certainty equivalent return for the optimally chosen combination?

6. In this question, you are asked to evaluate the common portfolio advice of a 60/40 split between stocks and bonds. Suppose the expected rate of return on equities is 8%/year and the standard deviation of the return on equities is 19%/year. T-Bills earn 1%/year (assume they are riskless).

(a) What is the implied risk aversion coefficient of an investor for whom a 60/40 split is optimal?

(b) Plot the CAL along with a couple of indiference curves for the investor type identified above.

7. For this exercise, you will have to download data on equity returns from 1926 to

2022 from Kenneth French’s Data library (http://mba.tuck.dartmouth.edu/pages/ faculty/ken.french/data_library.html).  You will download data on the excess returns of stocks over T-bills; they are available near the top of the page under Fama/French 3 Factors.  You need the variable Mkt-RF. The variable is available at 4 diferent frequencies: annual, monthly, weekly and daily.

(a) Compute the mean and standard deviation of stock returns at diferent frequen- cies, including their standard errors. To make results comparable, express every- thing in an annual frequency. To a first order, this means multiplying monthly returns by 12, weekly returns by 52, and daily returns by 250 (there are approxi- mately 250 trading days in a year).

Compare your estimate of the mean and standard deviation (of annualized re- turns) across these diferent frequencies. How does the precision of your estimates (the tightness of confidence intervals change?). Discuss.

(b) For each decade, compute the mean return in the stock market, and volatility. You can use monthly data for this exercise.  Do your estimates of the mean and volatility vary across decades? Are your estimates statistically diferent?

(c) For this part, we will only use daily returns. For each year in the sample, compute the realized volatility (i.e. standard deviation) of daily market returns. Plot the resulting yearly observations. Is market volatility constant over time?

For this exercise, we will need a software package that allows you to estimate means and standard deviations, along with confidence intervals. If the software you use does not provide you with standard errors, you can consult your statistics textbook (or Wikipedia) and you can compute them manually.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图