代做ECE5550: Applied Kalman Filtering DYNAMIC SYSTEMS WITH NOISY INPUTS代写数据结构语言程序

ECE5550: Applied Kalman Filtering

DYNAMIC SYSTEMS WITH NOISY INPUTS

3.1: Scalar random variables

The purpose of Kalman filters is to estimate the hidden internal state

of some system where that state is affected by noise and where our

measurements of system output are also corrupted by noise.

By definition, noise is not deterministic—it is random in some sense.

So, to discuss the impact of noise on the system dynamics, we must review the concept of a “random variable,” (RV) X .

• Cannot predict exactly what we will get each time we measure or sample the random variable, but

• We can characterize the probability of each sample value by the “probability density function” (pdf).

Probability density functions (pdf)

We denote probability density function (pdf) of RV X as fX (x).

fX (x0) dx is the probability that random variable X is between [x0, x0 + dx].


Properties that are true of all pdfs:

1. fX(x) ≥ 0 ∀ x.

2. fX(x) dx = 1.

3. Pr  , which is the RV’s cumulative distribution function (cdf).

Problem: Apart from simple examples it is often difficult to determine fX (x) accurately. ➠ Use approximations to capture the key behavior.

Need to define key characteristics of fX (x).

EXPECTATION : Describes the expected outcome of a random trial.

Expectation is a linear operator (very important for working with it).

So, for example, the first moment about the mean: E[X ¯(x)] = 0.

STATISTICAL AVERAGE: Different from expectation.

Consider a (discrete) RV X that can assume n values x 1 , x2 , . . .xn.

Define the average by making many measurements N → ∞ . Then,

mi is the number of times the value of the measurement is i.

In the limit, m 1 /N Pr(X = x 1) and so forth (assuming ergodicity),

So, statistical means can converge to expectation in the limit. (Can show similar property for continuous RVs. . .  but harder to do.)

VARIANCE: Second moment about the mean.

or is equal to the mean-square minus the square-mean.

STANDARD DEVIATION : Measure of dispersion about the mean of the samples of X: σX =

The expectation and variance capture key features of the actual pdf. Higher-order moments are available, but we won’t need them!

KEY POINT FOR UNDERSTANDING VARIANCE: Chebychev’s inequality

Chebychev’s inequality states (for positive ε)

which implies that probability is concentrated around the mean.

It may be proven as follows:

For the two regions of integration |x ¯(x) |/ε 1 or (x ¯(x))2/ε2 1. So,

Since fX (x) is positive, then we also have

This inequality shows that probability is clustered around the mean, and that the variance is an indication of the dispersion of the pdf.

That is, variance (later on, covariance too) informs us of how uncertain we are about the value of a random variable.

• Low variance means that we are very certain of its value;

• High variance means that we are very uncertain of its value.

The mean and variance give us an estimate of the value of a random variable, and how certain we are of that estimate.

The most important distribution for this course

The Gaussian (normal) distribution is of key importance to Kalman   filters. (We will explain why this is true later—see main point #7” on pg. 3–14.)

Its pdf is defined as:

Symmetric about¯(x) .

Peak proportional to  at¯(x) .

Notation: X N(¯(x),σX(2)).

is 68% ; probability that X within

±2σX of ¯(x) is 96% ; probability that X within ±3σX of ¯(x) is 99.7%.

• A ±3σX range almost certainly covers observed samples.

“Narrow” distribution ➠ Sharp peak. High confidence in predicting X .

“Wide” distribution ➠ Poor knowledge in what to expect for X .

3.2: Vector random variables

With very little change in the preceding, we can also handle vectors of random variables.

X described by (scalar function) joint pdf fX (x) of vector X .

fX (x0) means fX (X1  = x 1 , X2  = x2 ··· Xn = xn ).

That is, fX (x0) dx1 dx2   ··· dxn is the probability that X is between x0 and x0 + dx.

Properties of joint pdf fX (x):

1. fX (x) ≥ 0    ∀ x. Same as before.

2. ··· fX (x) dx1 dx2 ··· dxn = 1. Basically the same.

dx1 dx2 · · · dxn. Basically same.

4. Correlation matrix: Different.

5. Covariance matrix: Different. Define  = X ¯(x) . Then,

ΣX- is symmetric and positive-semi-definite (psd). This means

PROOF: For all y 0,

Notice that correlation and covariance are the same for zero-mean random vectors.

The covariance entries have specific meaning:

• The diagonal entries are the variances of each vector component;

• The correlation coefficient ρij is a measure of linear dependence between Xi and Xj . |ρij | ≤ 1.

The most important multivariable distribution for this course

The multivariable Gaussian is of key importance for Kalman filtering.

Notation: X ~ N(x-,Σ).

Contours of constant fX (x) are hyper-ellipsoids, centered at , directions governed by Σ . Principle axes decouple Σ

(eigenvectors).

Two-dimensional zero-mean case: (Let σ 1  = σX 1   and σ2  = σX2)







热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图