代做Mathematical Methods代做Java程序

Mathematical Methods

1. Diffusion-Reaction and Hypoxia of Cellular Spheroids

The concentration of a reactant undergoing diffusion and a first-order irreversible reaction (or consumption by cells) in a spherical catalyst is described by the reaction- diffusion equation

a.   Render this equation dimensionless and show that there is only one dimensionless parameter---the (squared) Thiele modulus Φ2 = ka2 /D.

b.    Show that the solution for the dimensionless concentration is

c.    By doing a Taylor expansion of the dimensionless solution with respect to Φ in b, show that for small Thiele modulus Φ  ≪ 1, the concentration is described by

C(r)~ 1 − (1 − r2)Φ2 /6

Note that the concentration is finite at the center of the sphere r=0 at small Thiele modulus.

For large spheres, fast reaction or small diffusivity, such that the Thiele modulus is large Φ  >> 1, expand the exact solution from r=1 and large Φ to show the concentration decays exponentially to zero rapidly from the surface and the concentration approaches zero at the center.

d.   (Ref: Murphy et al, J. of Royal Society Interface, 14: 20160851 (2017))

Cancer cells are often aggregated into a large sphere called spheroids for drug testing. It has been found that cells in the center of larger spheroids tend to die because oxygen cannot diffuse into the middle due to uptake by cells closer to the surface of the spheroids.  You will see the decay of the oxygen concentration from the surface in figures c to e below, corresponding to numerical solution of the reaction-diffusion equation and actual measured data.  (Cr  is the concentration at a particular r position and C0  is the oxygen concentration at the surface (our C ) of about 267 μM. You can divide the K/D value in fig f by the surface oxygen concentration to get an estimated average value of k/D. (The scale bar in g is 250   microns and be careful with the difference in K and k.)

Use the measured concentration at the spheroid center (r=0) in fig e to determine k/D for each spheroid, given that the radii of the spheroids with different numbers of cells can be measured from fig g ?  Compare your results to theirs from fig. f.

e.   If cells only die by hypoxia if the oxygen concentration around them is below Cc ,

derive an explicit expression for the critical spheroid size ac D/k, Cc) below which all cells will survive. If Cc  is 253 μM for hypoxia,  what is the actual dimensional critical spheroid size ac, using the average k/D you have estimated ?

2. Cyclic Voltammetry Consider atypical cyclic voltammetry data shown below   with different scan rates.  For the peak current of cyclic voltammetry, the possible physical parameters  for the problem are

Peak current Ip  in C/s

Charge transferred to the electrode nF  in C/mol, where n is the valency

Thermal energy RT   in J/mol

Surface area of the electrode A    in m2

Bulk concentration of the reactant Cin mol/m3

Voltagescan (sweep) rate S   in V/s

Diffusivity D in m2/s

a.  Use Buckingham pi theorem to determine that the peak current is

Ip = AnFC(nFDS/RT)1/2

The square root scaling with respect to the scan rate S is shown on the left plot.

You will need to add C (Coulombs) and mole to the three fundamental units L, M and time.

b.   Explain qualitatively why this peak current corresponds to a Damkholer number of unity for the surface Faradaic electrode reaction and why it occurs at a voltage roughly equal to RT/nF (~25.6mV) above the oxidation potential, which corresponds to the thermal energy and barrier of most Faradaic reactions.

3.  Exact Solution for Cyclic Voltammetry

If the redox reaction of a cyclic voltammetry experiment becomes fast enough, such that the Damkohler number is larger than 1,  then the ion concentration vanishes at the electrode at x=0 and a diffusion front begins to expand away from the electrode:

a.    Solve the above PDE by self-similar solution and show that the flux at the electrode is

Such that the current is

I = AnFJ

b.   Determine how the current decreases with Voltage V by replacing t with the scan rate S, S  = V/t.

c.    The peak current occurs when the voltage exceeds the thermal voltage (oxidation potential) V~RT/nF at sometime t~tp, hence at Ip,

Recover the scaling result of Problem 2 to get how the peak current depends on the scan rate S and the diffusivity D, modulo an arbitrary constant.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图