代写UFMFVL-15-M Mechanics of Composites 24/25代写Python编程

MODULAR PROGRAMME- COURSEWORK ASSESSMENT SPECIFICATION

Module Details

Module Code

UFMFVL-15-M

Run

24/25

Module Title

Mechanics of Composites

1 Introduction

This coursework is a team-based activity. Pair in groups of 2 and address Tasks 1 and 2.

2    Task 1- Laminate Analysis 35%

A laminate is made of n laminae each from different materials is subjected to three membrane forces and three bending moments as shown in Figure 1.

Figure 1: A laminate subjected to membrane forces and bending moments

where

•    Nx  = normal force resultant in the x direction (N/m)

•    Ny  = normal force resultant in they direction (N/m)

•    Nxy  = shear force resultant (N/m)

•    Mx  = Bending moment resultant in the x direction (N. m/m)

•    My  = Bending moment resultant in they direction (N. m/m)

•    Mxy  = Torsional moment resultant (N. m/m)

This laminate is made of nplies ( n   ≤   11) each having a thickness of tk  and an angle of θk  with the x axis (global coordinate). The material properties of one ply in its principal directions are given in Table 1.

Table 1: Mechanical properties of composite ply

E11

Longitudinal modulus of elasticity (Mpa)

E22

Transverse modulus of elasticity (Mpa)

G12

In-plane shear modulus (Mpa)

Xt

Tensile strength of ply in longitudinal direction (Mpa)

Xc

Compressive strength of ply in longitudinal direction (Mpa)

Yt

Tensile strength of ply in transverse direction (Mpa)

Yc

Compressive strength of ply in transverse direction (Mpa)

S

In-plane shear strength (Mpa)

θ12

Poisson's ratio in plane 1-2

α1

Longitudinal coefficient of thermal expansion (μE/℃)

α2

Transverse coefficient of thermal expansion (μE/℃)

β1 *

Longitudinal moisture swelling coefficient (μE/%)

β2

Transverse moisture swelling coefficient (μE/%)

* Strain  is  measured  in μE  and ∆c  (change  in  concentration  of the  swelling  agent,  i.e. moisture) is percentage (%)

2.1 Part A- 20%

The laminate is subjected to membrane forces, bending moment, change of temperature ΔT and a moisture concentration of Δc. Design an interactive spreadsheet to calculate the:

1.   Factor of Safety (FoS) of each ply and the whole laminate based on maximum stress criterion.

2.   FoS of each ply and the whole laminate based on maximum strain criterion

3.   FoS of each ply and the whole laminate based on Tsai-Hill Criterion.

4.   FoS of each ply and the whole laminate based on Tsai-Wu Criterion.

5.   FoS of each ply and the whole laminate based on Hoffman criterion.

2.2 Part B - 10%

When one or more ply fails, using Ply by Ply Failure method calculate the following:

1.   FoS of each remaining ply and the whole laminate based on Interactive Tensor Polynomial

Theory - Tsai-Wu Criterion

2.   Continue this procedure until the catastrophic failure (automated process in excel)

2.3 Part C- 5%

Calculate buckling loads under various loads and boundary conditions.

2.4 Deliverables

A spreadsheet for the given task labelled with your name  and  student  numbers  and  a  clear description (within the spreadsheet) on how it works.

Important Note: This spreadsheet is essential for Task 2.

3    Task 2- Design and analysis of a composite pressure vessel      65%

3.1 Introduction- filament winding

Filament winding is used for the manufacture of parts with high fibre volume fractions  and controlled fibre orientation. Fibre tows are immersed in a resin bath where they are coated with low or medium molecular weight reactants. The impregnated tows are then literally wound around a mandrel (mould core) in a controlled pattern to form the shape of the part. After winding, the resin is then cured, typically using heat. The mould core may be removed or may be left as an integral component of the part.

The filament winding process was originally invented to produce missile casings, nose cones and fuselage structures, but with the passage of time industries other than defence and aerospace have discovered the strength and versatility of filament winding. Examples of products created using the process of filament winding include:

•    Tubes

•    Transmission poles

•    Aircraft fuselages

•    Gas, water, or tanks

•    Cement Mixers

•    Pipes

3.2 Brief

Your task is to use your laminate design spreadsheets and the Abaqus ®  finite element analysis software package to design a laminate layout for a pressure vessel as shown in Figure 2. The pressure vessel is made of ONLY laminate composites. It is subjected to an internal pressure of 55 bar. Your final design must have a FoS = 2.5.

Figure 2: General layout of a composite pressure vessel subjected to internal pressure

The pressure vessel is supported by two concrete supports as shown in Figure 2. The concrete supports are assumed to be rigid compared to the pressure vessel. The environmental effects of moisture maybe assumed to be negligible.

There are two inlets on each spherical end cap of the pressure vessel and there are two outlets on the top and bottom of cylindrical part as presented inFigure 2throughFigure 3. Diameters of inlets and outlets are 60 mm.

Dimensions of the pressure vessel are given in Figure 3andTable 2.

Figure 3: Geometrical dimensions of the pressure vessel

Table 2: Dimensions for the inner radius and position of supports

Group Number

R

(mm)

D

(mm)

1

375

1600

2

395

1700

3

370

1600

4

380

1700

5

360

1600

6

385

1700

7

365

1600

8

420

1700

9

405

1600

10

415

1700

Material properties for the lamina in the principal directions are given inTable 3.

Table 3: Lamina’s properties

E11

Longitudinal modulus of elasticity (Mpa)

110,000

E22

Transverse modulus of elasticity (Mpa)

7,500

G12

In-plane shear modulus (Mpa)

5,000

Xt

Tensile strength of ply in longitudinal direction (Mpa)

1,950

Xc

Compressive strength of ply in longitudinal direction (Mpa)

1,450

Yt

Tensile strength of ply in transverse direction (Mpa)

100

Yc

Compressive strength of ply in transverse direction (Mpa)

200

S

In-plane shear strength (Mpa)

160

P

Density (kg/m3 )

1,350

θ12

Poisson's ratio in plane 1-2

0.3

α1

Longitudinal coefficient of thermal expansion (μE/℃)

13

α2

Transverse coefficient of thermal expansion (μE/℃)

35

3.3 Procedure

3.3.1  Engineering analysis of the pressure vessel

1.   Research on filament winding method (to determine the limitation of this method and

preferable angles of fibres etc.).

2.   Use the theory of pressure vessels (without consideration of the pressure vessel’s weight) to determine the applied longitudinal and hoop forces per unit length (Nx , Ny , Nxy , …).

3.   Use your spreadsheet to determine the best layout for the applied forces- using Solver® will help you significantly.

4.   Use your theoretical laminate layout from step 3 to analyse the pressure vessel using Abaqus® .

5.   Perform. a mesh study to determine the optimum size and shape of mesh.

6.   Reduce weights by adding patches around the holes instead of making the whole pressure vessel thicker.

7.   If your FoS is within limit goto step 8 otherwise change the thickness or angle of fibres or

size or orientation of patches to achieve the given FoS.

3.3.2 Advanced Analysis

8.   Investigate on the design and analysis of inlet and outlets and how this affects the FoS.

9.   Investigate if this vessel is suitable to carry liquid (density 1000 kg/m3 ) in addition to the given pressure and its weight. Ifnot, change the design to have a FoS of 2.5.

10. Investigation on environmental effect (when temperature changes ΔT  = 50℃) on FoS in addition to the given pressure, weight of liquid and vessel. If not, change the design to have a FoS of 2.5.

Note 1:

You need to document every step of your work. Remember that ONLY your report will be marked.

Note 2:

The output of this coursework will be a report in the style of a 10-page conference paper. Please use the provided template (Manuscript_template)




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图