代做ECN 3620 Econometrics Fall 2024代写Python语言

ECN 3620 Econometrics

Fall 2024

Course Wrap Up

Thank you for taking Econometrics with me this semester. I certainly enjoyed this class, and I hope you feel the same way.

R Basic

 

Import data

 

Generate new variables

 

Create graphs

 

Get sample statistics

Basic Statistics

 

Sample distribution and population distribution

 

Standard Normal distribution and t distribution

 

Jarque-Bera test and related concepts

 

Find corresponding probability and critical values from the Z table

 

Value at Risk

 

Central Limit Theorem and confidence interval

 

Estimate vs Estimator

Simple Linear Regression

 

Coefficient related diagnostic: t test and p value

 

Hypothesis test and confidence interval of coefficient

 

R2, adjusted R2, and its components

 

Standard Error of Estimate vs. Standard Error of Forecast

 

Within sample and (pseudo) out-of-sample forecast

 

MAE (Mean-Absolute-Error), RMSE (Root-Mean-Square-Error), MAPE (Mean-Absolute- Percentage-Error)

Multiple Linear Regression

 

Test linear combinations of parameters: e.g. H0  : -β1  = β2 or H0  : 2β1  = 3β2  +12

 

Joint significance test: F test

 

Variable selection

 

Dummy variables, interaction of dummy variables with other variables

 

Residual related diagnostic: Homoscedasticity vs Heteroskedasticity

 

Applications: hedonic pricing, seasonality and trend, Interrupted Time Series design (ITS)

Special Topics and Models in Multiple Regression

 

Omitted variable bias: the direction of omitted variable bias

 

Multicollinearity: symptoms and remedy

 

Models with low R2

 

Nonlinear models: LnY = a + b X; LnY = a + b LnX

 

Probability models: linear, logit, and probit

 

Probability models: odds and odds ratio (optional)

 

Probability models: marginal effects, partial effects

Causality Models

 

Causality problems

 

Interrupted Time Series (ITS): graphs, regressions, and interpretations

 

Difference-in-Differences: graphs, tables, regressions and interpretations

Time Series Models

 

Components of time series data

 

Lag function and difference function

 

Mean stationary, first and second difference

 

AR, MA, ARMA, and ARIMA models

The following is a checklist of Econometrics modeling when you start your project:

1. Do you have relevant data for the question you are after? Do you have enough observations (at least 30 or so)?

2. If you have data, is there error in the data? You can check mean, maximum, minimum. Graph the data and see whether there are outliers.

3. Are you using the right unit of measurement? This is especially important when you are doing medical and healthcare research.

4. What types of data do you have? Time series, cross-sectional, panel, other?

5. If the data is cross-sectional or panel, you are most likely to choose a structural model, in which case, you should check:

a. What independent variables should be included? Are you imposing a causality relationship? If so, is it valid?

b. What functional form. are you employing? Linear or nonlinear? Why?

c.   Are   the   estimated    coefficients   consistent   with   theory   or   your expectations? If not, what can explain the difference?

d. What is the model’s explanatory power? If it is low power, are the coefficients biased? Can you still use the parameters to forecast or make policy and business decisions?

e. Is multicollinearity a problem?

f. Does the error term satisfy homoscedasticity? Is there a serial correlation in the error term?

6. If the data is a time series, you are most likely to choose a time series model, in which case, you should check:

a. Graph the data. Is it at least mean-stationary? Are the first difference, second difference, seasonal difference, or log transformation needed?

b. After necessary conversion, what is the correlogram of the data? What does it tell you about low-order and high-order correlations?

c. Use AIC or SIC to find the appropriate model.

d. After comparing a series of test statistics and forecasting evaluations, fine-tune the model.

e. Is the residual white noise? Conduct forecasting.

7. In some cases, you may have forecasts from the structural model, time series model, and judgment forecasting from the experts at the same time. Then, your best forecast  will  most  likely  be  an  average  of the  three.  This  is  often  called  ensemble forecasting.

Where can I get more resources: data, books and websites?

One of the most asked questions is where I can get more resources such as data, books, or websites for more information on Econometrics.  Here is a list of resources you may find helpful and interesting.

Data Resources

IPUM:https://ipums.org/

Integrated Public Use Microdata Series. IPUMS provides census and survey data from  around  the  world   integrated   across  time  and  space.  IPUMS  integration  and documentation  make  it  easy  to  study  change,  conduct  comparative  research,  merge information  across data types,  and  analyze  individuals within  family  and  community context. Data and services are available free of charge.

ICPSR: (http://www.icpsr.umich.edu/icpsrweb/ICPSR/)

Inter-University Consortium for Political and Social Research is an international consortium  of  about  700  academic  institutions  and  research   organizations.  ICPSR maintains a data archive of more than 500,000 files of research in the social sciences. It hosts  16 specialized collections of data in education, aging, criminal justice,  substance abuse, terrorism, and other fields.

Current Population Survey:http://www.census.gov/cps/The Current Population Survey (CPS), sponsored jointly by the U.S. Census Bureau and the U.S. Bureau of Labor Statistics (BLS), is the primary source of labor force statistics for the population of the United  States.  The  CPS  is  the  source  of  numerous  high-profile  economic  statistics, including the national unemployment rate, and provides data on a wide range of issues relating to employment and earnings. The CPS also collects extensive demographic data that complement and enhance our understanding of labor market conditions in the nation overall, among many different population groups, in the states and in substate areas.

CRSP: (http://www.crsp.com/)  provides monthly, quarterly, or annual updates of end-of-day and month-end prices on all listed NYSE, AMEX, and NASDAQ common stocks with basic market indices. Available on all Cutler workstations.

WRDS:   (http://wrds.wharton.upenn.edu/)   Wharton    Research   Data    Services (WRDS) is a web-based business data research service from The Wharton School at the University of Pennsylvania. It is known for its holdings of historical financial data from CRSP and COMPUSTAT. This data covers over 30,000 companies and includes security prices and trading volume, income and balance sheet items. WRDS also contains stock market indices, interest rates, mutual fund and executive compensation data, and a wide array of macroeconomic time series.

Bureau     of     Labor      Statistics,      Bureau      of     Economic      Analysis: (http://www.bls.gov/,  http://www.bea.gov/)   generally   macroeconomic   data   such   as employment rate, wage rate by region, consumer price index, GDP by region, Import and

Export etc.

Economagic:      (https://fredaccount.stlouisfed.org/public/datalist/159?pageID=8) there are more than 200,000 time series for which data and custom charts can be retrieved. Though the greatest utility of this site is the vast number of economic time series, and the easily modified charts of that same data, an overlooked facility of great utility is the availability of Excel files for all series.  The majority of the data is USA data. The core data sets involve US macroeconomic data (that is, for the whole US), but the bulk of the data is employment data by local area -- state, county, MSA, and many cities and towns.

Economic  Data    FRED:   (http://research.stlouisfed.org/fred2/)   Welcome  to FRED® (Federal Reserve Economic Data), a database of 19,599 U.S. economic time series. With FRED® you can download data in Microsoft Excel and text formats and view charts of data series.

US  Census:  (http://www.census.gov/)  public  resources  from  the  US  Census Bureau including population, economic, industry, and geography studies. The information can be accurate at zip code level.

MEPS: (http://www.meps.ahrq.gov/mepsweb/) The Medical Expenditure Panel Survey (MEPS) is a set of large-scale surveys of families and individuals, their medical providers, and employers across the United States. MEPS is the most complete source of data on the cost and use of health care and health insurance coverage.

NHANES:   (http://www.cdc.gov/nchs/nhanes.htm)   The   National   Health   and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The survey is unique in that it combines interviews and physical examinations.

Pew  Research  Center:  (http://people-press.org/dataarchive/)  A   collection  of survey data from Pew Research Center For The People & The Press. Survey data are released five months after the reports are issued and are posted on the web as quickly as possible.

Books

Business Forecasting (5th edition) J. Holton Wilson and Barry Keating

*Introductory Econometrics: a Modern Approach, by Jeffery Wooldridge (pre- bundled with the student version of Eviews).

*A Guide to Modern Econometrics by Marno Verbeek

Econometric Analysis (5th Edition) by William H. Greene

Introduction to Econometrics by James H. Stock and Mark W. Watson Analysis of Financial Time Series by Ruey Tsay

*Applied Econometric Times Series (3rd edition) by Walter Enders

Introductory Econometrics for Finance by Chris Brooks *Stands for my personal favorite.

Additional Resources on Using R

If you want to learn R programming, the following are recommended readings. They are all freely available on the internet.

•   Forecasting: Principles and Practice, Rob Hyndman and George Athanasopoulos

https://otexts.com/fpp3/

•    Using R for Introductory Econometrics, by Florian Heiss

https://www.urfie.net/

•   Applied Econometrics Time Series, Walter Enders

https://time-series.net/home

•   R for Data Science, Hadley Wickham and Garrett Grolemund

https://r4ds.had.co.nz/

•    UCLA R resources

https://stats.oarc.ucla.edu/r/

•   Econometrics Academy

https://sites.google.com/site/econometricsacademy/

Websites

UCLA Academic Technology Services:

http://stats.idre.ucla.edu/  A  website  by  the  Institute  for  Digital  Research  and Education at UCLA. It has lectures, examples and videos on R, SAS, SPSS, and STATA.

Econometrics Academy

https://sites.google.com/site/econometricsacademy/home?authuser=0

The Econometrics Academy is a free online educational platform and non-profit organization. Its mission is to offer free education on Econometrics to anyone in the world.

Using Python for Introductory Econometrics

http://www.upfie.net/

This book introduces the popular, powerful and free programming language and software package Python with a focus on the implementation of standard tools and methods used in econometrics.

Using R for Introductory Econometrics

http://www.urfie.net/

This book introduces the popular, powerful and free programming language and software package R with a focus on the implementation of standard tools and methods used in econometrics.

IBISWorld

https://ezproxy.babson.edu/login?url=https://my.ibisworld.com

Search by NAICS code or keyword to find thousands of U.S. industry research reports, includes Global Industry reports with some China coverage.

The Economist:https://libguides.babson.edu/economist

•   The app and economist.com—distinctively distilled analysis

•   Digital newsletters—curated topical opinion

•   Audio version & podcasts—immersive listening

•   The digital archive—all our content since 1997

•   Webinars and conferences—intelligent debate and informed analysis

•   Flagship franchises—The World in and 1843 magazine

WSJ Economic Forecasting:

http://online.wsj.com/public/page/economic-forecasting.html

A collection of forecasting on US macro-economy including GDP, unemployment rate, housing, inflation. Forecasts are from various resources.

Institute of Business Forecasting:

www.ibf.orgoffers a variety of programs for business professionals and quarterly Journal of Business Forecasting: Methods & Systems a jargon-free journal on forecasts.

Forecasting Principle:

www.forecastingprinciples.com/  The  Forecasting  Principles site summarizes useful knowledge about forecasting so that it can be used by researchers, practitioners, and educators. It has link for researchers, practitioners and educators, and databases.

Federal Forecasters Consortium:

http://www.va.gov/HEALTHPOLICYPLANNING/FFC_2014.asp

The Federal Forecasters Consortium is a collaborative effort of agencies in the United States Government, as well as other interested parties in the academic and not-for- profit communities, who share an interest in the practice, planning, and use of forecasting activities by and within the Federal Government.

Science Direct:

http://libguides.babson.edu/content.php?pid=17543&sid=1839426

Select Science Direct. You need log in using your Babson email and password. It is the world's largest electronic collection of science, technology, and medicine full-text. It has over 2,500 peer-reviewed journals and more than 11,000 books. There are currently more than 9.5 million articles/chapters, a content base that is growing at a rate of almost 0.5 million additions per year.


 

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图