代写Coding for Risk Management代写留学生Python语言

Master of Science in Enterprise Risk Management

Coding for Risk Management

Course Overview

Risk Management requires programming.  The tasks that we might think are specific to business analysts are becoming common throughout companies.  And, the approach of using shared Excel files across a network is being replaced with sharing database access firmwide and processing the data with SQL and code.  Even at the most senior levels, decision makers must be able to casually grab and view datasets and run scripts.  As tools emerge to  automate tasks and make analysis more friendly, facility with programming is required to interface and take advantage of the tools.  Ironically, automation requires more facility with programming.  The reason for all of this is that the benefit is so high.  Companies can find information, communicate it, and make decisions faster using automation.

Coding for Risk Management provides the knowledge that students need to thrive in today’s businesses.  The course offers a hands-on approach to studying the common tools of SQL for data gathering, Python for data analysis, R for analytics and data visualization, and Amazon Web Services for the use of Cloud infrastructure for secure and scalable infrastructure.  These tools are explored by coding up risk management concepts that appear in Market    Risk, Credit Risk, and Insurance Risk.  Students have the opportunity to learn the landscape of different syntaxes and be ready to adopt the local programming language and technical conventions of whatever firm they work at.

Learning Objectives

At the end of the course, students will be able to:

•    L1 Code up essential risk management concepts in the Python and R programming languages

•    L2 Adhere to and opine on best coding practices

•    L3 Decide on which languages are best for different tasks

•    L4 Rapidly adapt to and learn new syntaxes

•    L5 Query internal corporate databases and external web resources to gather and organize data

•    L6 Visualize data and create interactive dashboards for decision making


Readings

Forta, Ben. (2019). SQL in 10 Minutes a Day. Sams Publishing; 5 edition (December 20, 2019).

Lander, Jared P. (2017). R for Everyone. Addison-Wesley Professional; 2nd edition (June 18, 2017).

Yan, Yuxing. (2017). Python for Finance 2nd Edition. Packt Publishing 2 edition (June 30, 2017).

Yan, Yuxing. (2018). Financial Modeling using R 2nd Edition. Legaia Books USA; 2nd edition (January 18, 2018).

Assignments and Assessments

Weekly programming assignments will enable students to immerse themselves in different programming languages and styles of coding.  The assignments will be graded without partial credit; students will need to meet the challenge of producing successful code that accomplishes the assigned tasks.  The final exam is a repeat of these coding challenges.  Small case studies will allow students to work on more complete programming projects.  Case studies may very across different semesters.

Here are examples:

Case Study: FRTB Capital Estimation:

Estimate the capital requirement for a small bank based on the bank’s trading data held in a SQL database.

Case Study: Merton Model Default Risk Estimation:

Estimate the Default Risk of a company using Merton’s model

Case Study: Altman’s Z Score model of credit risk based on a balance sheet.

Refit the classic Altman’s Z Score model for data relevant to a specific industry.

Case Study: Agent Based Modeling.

Use an agent-based modeling framework to model the behavior. of economic agents.

Case Study: CDO Default Risk Estimation:

Use copula modeling functionality in R to estimate and backtest correlated defaults.

Case Study: Counter-party Credit Risk Modeling:

Estimated the counter-party credit risk across a firm by gathering its trade data from a databased and building appropriate model for each asset type.

Case Study: Lending Data:

Grab Lending Clubs default data and fit a model to it.


Grading

The final grade will be calculated as described below:

FINAL GRADING SCALE

Grade

Percentage

A+

98-100 %

A

93-97.9 %

A-

90-92.9 %

B+

87-89.9 %

B

83-86.9 %

B-

80-82.9 %

C+

77-79.9 %

C

73-76.9 %

C-

70-72.9 %

D

60-69.9 %

F

59.9% and below

 

Assignment/Assessment

% Weight

Individual or

Group/Team

Grade

Mini Case Studies

60

Individual

Final Exam

30

Individual

Participation

10

Individual

 


 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图